全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

激光掺杂制备晶体硅太阳电池研究进展

, PP. 141-147

Keywords: 激光掺杂,激光诱导损伤,掺杂浓度,掺杂深度,晶体硅太阳电池

Full-Text   Cite this paper   Add to My Lib

Abstract:

激光掺杂具有可控性强,工艺简单,对材料造成的激光诱导损伤小等优点,是制备高效晶体硅太阳电池理想的技术选择。本文总结了国内外激光掺杂的研究工作,介绍了掺杂制备晶体硅太阳电池主要激光技术,分析了激光能量密度、激光脉冲个数、激光波长,和材料表面织构与否对激光掺杂效果的影响,以及激光掺杂制备的晶体硅太阳电池的优势特点。

References

[1]  Schultz O, Glunz S, Warta W, et al. High-efficiency solar cells with laser-grooved buried contact front and laser-fired rear for industrial production[C]. Proceedings of the 21st European Photovoltaic Solar Energy Conference, Dresden, 2006: 826-830.
[2]  Chong C, Wenham S, Green M. High-efficiency, laser grooved, buried contact silicon solar cells[J]. Applied Physics Letters, 1988, 52: 407-409.
[3]  Kray D, Aleman M, Fell A, et al. Laser-doped silicon solar cells by laser chemical processing (lcp) exceeding 20% efficiency[C]. Proceedings of the 33rd IEEE Photovoltaic Specialist Conference, California, USA, 2008: 786-789.
[4]  Eisele S J, Roder T C, Kohler J R, et al. 18.9% efficient full area laser doped silicon solar cell[J]. Applied Physics Letters, 2009, 95(13): 3501-3504.
[5]  Colville F. Laser-assisted selective emitters and the role of laser doping[J]. Photovoltaics International, 2009(5): 7-11.
[6]  Kato S, Nagahori T, Matsumoto S. ArF excimer laser doping of boron into silicon[J]. Journal of Applied Physics, 1987, 62: 3656-3659.
[7]  Sera K, Okumura F, Kaneko S, et al. Excimer-laser doping into Si thin films[J]. Journal of Applied Physics, 1990, 67: 2359-2363.
[8]  Stuck R, Fogarassy E, Muller J, et al. Laser-induced diffusion by irradiation of silicon dipped into an organic solution of the dopant[J]. Applied Physics Letters, 1981, 38: 715-719.
[9]  Fell A, Mayer K, Hopman S, et al. Potential and limits of chemical enhanced deep cutting of silicon with a coupled laser-liquid jet[J]. Journal of Laser Applications, 2009, 21: 27-31.
[10]  Kray D, Fell A, Hopman S, et al. Laser chemical processing (LCP) - a versatile tool for microstructuring applications[J]. Applied Physics a-Materials Science & Processing, 2008, 93(1): 99-103.
[11]  Kray D, Mcintosh K R. Analysis of selective phosphorous laser doping in high-efficiency solar cells[J]. IEEE Transactions on Electron Devices, 2009, 56(8): 1645-1650.
[12]  Fell A. Simulation of phase changes and dopant diffusion in silicon for the selective emitter with laser chemical processing[C]. Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, 2008: 615-618.
[13]  Narayan J, Young R, Wood R, et al. p-n junction formation in boron-deposited silicon by laser-induced diffusion[J]. Applied Physics Letters, 1978, 33: 338-341.
[14]  Venturini J, Hernandez M, Kerrien G, et al. Excimer laser thermal processing of ultra-shallow junction: laser pulse duration[J]. Thin Solid Films, 2004, 453: 145-149.
[15]  Kerrien G, Boulmer J, Debarre D, et al. Ultra-shallow, super-doped and box-like junctions realized by laser-induced doping[J]. Applied Surface Science, 2002, 186(1-4): 45-51.
[16]  Bruton T, Mason N, Roberts S, et al. Towards 20% efficient silicon solar cells manufactured at 60 MWP per annum[C]. Proceedings of the 3rd World Conference on Photovoltaic Energy Conversion, Osaka, Japan, 2003: 899-903.
[17]  Morilla C, Russell R, Fernandez J, et al. Laser induced ablation and doping processes on high efficiency silicon solar cells[C]. Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, 2008: 812-815.
[18]  Schroder D, Meier D. Solar cell contact resistance-a review[J]. IEEE Transactions on Electron Devices, 1984, 31(5): 637-647.
[19]  Ametowabla M, Esturo-Breton A, Kohler J R, et al. Laser processing of crystalline silicon solar cells[C]. Proceedings of the 31st IEEE Conference Record of the Photovoltaic Specialists, 2005: 1277-1280.
[20]  Plaza C J, Torres J A, Malik O, et al. Very shallow boron junctions in Si by implantation and SOD diffusion obtained by RTP[J]. Microelectronics Journal, 2008, 39(3): 678-681.
[21]  Abbott M D. Advanced laser processing and photoluminescence characterisation of high efficiency silicon solar cells[D]. Sydney, Australia: University of New South Wales, 2006.
[22]  Koyo H, Yoshiyuki N, Akiyoshi O, et al. Profile controlled laser doping for n-type silicon solar cells[C]. Proceedings of the 22nd European Photovoltaic Solar Energy Conference, Milan, Italy, 2007: 685-689.
[23]  Deutsch T, Fan J, Turner G, et al. Efficient Si solar cells by laser photochemical doping[J]. Applied Physics Letters, 1981, 38(3): 144-146.
[24]  Rodofili A, Fell A, Hopmann S, et al. Local p-type back surface fields via laser chemical processing (lcp): first experiments[C]. Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, Valencia, Spain, 2008: 1808-1812.
[25]  Hopman S, Fell A, Mayer K, et al. Characterization of laser doped silicon wafers with laser chemical processing[C]. Proceedings of the 22nd European Photovoltaic Solar Energy Conference and Exhibition, Milan, Italy, 2007: 21-26.
[26]  Sameshima T, Usui S, Sekiya M. Laser-induced melting of predeposited impurity doping technique used to fabricate shallow junctions[J]. Journal of Applied Physics, 1987, 62: 711-715.
[27]  Wong Y W, Yang X Q, Chan P W, et al. Excimer- laser doping of spin-on dopant in silicon[J]. Applied Surface Science, 1993, 64(3): 259-263.
[28]  Ogane A, Hirata K, Horiuchi K, et al. Laser-doping technique using ultraviolet laser for shallow doping in crystalline silicon solar cell fabrication[J]. Japanese Journal of Applied Physics, 2009, 48(7): 1201-1205.
[29]  Mahir Okanovic, Ulrich Jäger, Marc Ahrens, et al. Influence of different laser parameters in laser doping from phosphosilicate glass[C]. Proceedings of the 24th European PV Solar Energy Conference and Exhibition, Hamburg, Germany, 2009: 578-582.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133