全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

改进加窗插值FFT动态谐波分析算法及应用

, PP. 270-277

Keywords: 谐波分析,频谱泄漏,旁瓣最低与最速下降窗,插值算法,快速傅里叶变换

Full-Text   Cite this paper   Add to My Lib

Abstract:

为减少加窗插值FFT谐波分析算法中的频谱泄漏和栅栏效应,本文分析了旁瓣最低与最速下降窗的频谱特性,提出了基于4项旁瓣最低与最速下降窗的插值FFT谐波分析算法,运用多项式拟合求出了简单实用的插值修正公式,减少了谐波分析时的计算量。仿真结果表明,在非同步采样和非整数周期截断条件下,本文所提出的谐波分析方法适合于弱信号和包含2~21次谐波的电力信号的精确分析。本文还给出了算法在三相多功能谐波电能表中的应用情况,验证了算法的有效性和准确性。

References

[1]  Yang Renggang, Xue Hui. A novel algorithm for accurate frequency measurement using transformed consecutive points of DFT[J]. IEEE Transactions on Power Systems, 2008, 23(3): 1057-1062.
[2]  Chang GW, Cheng IC, Yu-Feng T. Radial-Basis- Function-based neural network for harmonic detection[J]. IEEE Transactions on Industrial Electronics, 2010, 57(6): 2171-2179.
[3]  Ming Z, Kaicheng L, Yisheng H. A high efficient compression method for power quality applications [J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60(6): 1976-1985.
[4]  赵勇, 沈红, 李建华, 等. 谐波源的识别及其与非谐波源的分离方法[J]. 中国电机工程学报, 2002, 22(5): 84-87.
[5]  Zhao Yong, Shen Hong, Li Jianhua, et a1. Approach of identification and separetion of harmonic source[J]. Proceedings of the CSEE, 2002, 22(5): 84-87.
[6]  Hao Qian, Rongxiang Zhao, Tong Chen. Interharmonics analysis based on interpolating windowed FFT algorithm[J]. IEEE Transactions on Power Delivery, 2007, 22(2): 1064-1069.
[7]  Wen H, Teng Z, Guo S. Triangular self-convolution window with desirable sidelobe behaviors for harmonic analysis of power system[J]. IEEE Transactions on Instrumentation and Measurement, 2010, 59 (3): 543-552.
[8]  Ferrero A, Salicone S, Toscani S. A fast, simplified frequency-domain interpolation method for the evaluation of the frequency and amplitude of spectral components[J]. IEEE Transactions on Instrumentation and Measurement, 2011, 60 (5): 1579-1587.
[9]  潘文, 钱俞寿, 周鹗. 基于加窗插值FFT的电力谐波测量理论(II)双插值FFT理论[J]. 电工技术学报, 1994, 9(2): 53-56.
[10]  Pan Wen, Qian Yushou, Zhou E. Power harmonies measurement based on windows and interpolated FFT(II) dual interpolated FFT algorithms[J]. Transactions of China Electrotechnical Society, 1994, 9(2): 53-56.
[11]  吴静, 赵伟. 一种用于分析电网谐波的多谱线插值算法[J]. 中国电机工程学报, 2006, 26(8): 55-59.
[12]  Wu Jing, Zhao Wei. An algorithm of MICA for analyzing harmonics in power system[J]. Proceedings of the CSEE, 2006, 26(8): 55-59.
[13]  庞浩, 李东霞, 俎云霄, 等. 应用FFT进行电力系统谐波分析的改进算法[J]. 中国电机工程学报, 2003, 23(6): 50-54.
[14]  Pang Hao, Li Dongxia, Zu Yunxiao, et a1. An improved algorithm for harmonic analysis of power system using FFT technique [J]. Proceedings of the CSEE, 2003, 23(6): 50-54.
[15]  Jain V K, Collins W L, Davis D C. High-accuracy analog measurements via interpolated FFT[J]. IEEE Transactions on Instrumentation and Measurement, 1979, 28(2): 113-122.
[16]  Grandke T. Interpolation algorithms for discrete Fourier transform of weighed signals[J]. IEEE Transactions. on Instrumentation and Measurement, 1983, 32(2): 350-355.
[17]  Belega D, Dallet D, Petri D. Statistical description of the sine-wave frequency estimator provided by the interpolated DFT method[J]. Measurement, 2012, 45(1): 109-117.
[18]  Harris F J. On the use of windows for harmonic of analysis with the discrete Fourier transform[J]. Proceedings of IEEE, 1978, 66(1): 51-83.
[19]  许珉, 张鸿博. 基于Blackman-harris窗的加窗FFT插值修正算法[J]. 郑州大学学报(工学版), 2005, 26(4): 99-101.
[20]  Xu Min, Zhang Hongbo. The correction algorithm based on the Blackman-Harris windows and interpolated FFT[J]. Journal of Zhengzhou University (Engineering Science), 2005, 26(4): 99-101.
[21]  Rife D C, Vincent G A. Use of the discrete Fourier transform in the measurement of frequencies and levels of tones[J]. The Bell System Technical Journal, 1970, 49(2): 197-228.
[22]  曾博, 滕召胜, 高云鹏, 等. 基于Rife-Vincent 窗的高准确度电力谐波相量计算方法[J]. 电工技术学报, 2009, 24(8): 154-159.
[23]  Zeng Bo, Teng Zhaosheng, Gao Yunpeng, et al. An accurate approach for power harmonic phasor calculation based on rife-vincent window[J]. Transactions of China Electrotechnical Society, 2009, 24(8): 154-159.
[24]  Offelli C, Petri D. Interpolation techniques for real-time multi-frequency waveform analysis[J]. IEEE Transactions on Instrumentation and Measurement, 1990, 39(1): 106-111.
[25]  温和, 滕召胜, 黎福海, 等. 改进加窗频谱峰值拟合算法及谐波分析应用[J]. 电工技术学报, 2011, 26(10): 8-15.
[26]  Wen He, Teng Zhaosheng, Li Fuhai, et al. Improved windowed spectral-peaks polynomial fitting algorithm and its application in power harmonic analysis[J]. Transactions of China Electrotechnical Society, 2011, 26(10): 8-15.
[27]  温和, 滕召胜, 王一, 等. 基于三角自卷积窗的介损角高精度测量算法[J]. 电工技术学报, 2009, 24(2): 164-169.
[28]  Wen He, Teng Zhaosheng, Wang Yi, et al. High accuracy dielectric loss angle measurement algorithm based on triangular self-convolution window[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 164-169.
[29]  Zhang Fusheng, Geng Zhongxing, Yuan Wei.The algorithm of interpolating windowed FFT for harmonic analysis of electric power system[J]. IEEE Transactions on Power Delivery, 2001, 16(2): 160-164.
[30]  Nuttall A H. Some windows with very good sidelobe behavior [J]. IEEE Transactions on Acoustics Speech Signal Processing, 1981, ASSP- 29(1): 84-91.
[31]  卿柏元, 滕召胜, 高云鹏, 等. 基于Nuttall窗双峰插值FFT的高精度电力谐波分析方法[J]. 中国电机工程学报, 2008, 28(2): 48-52.
[32]  Qing Baiyuan, Teng Zhaosheng, Gao Yunpeng, et a1. An approach for electrical harmonic analysis based on Nuttall window double-spectrum-line interpolation FFT [J]. Proceedings of the CSEE, 2008, 28(2): 48-52 .

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133