全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

硅氧烷对水树老化后的交联聚乙烯电缆的修复研究

, PP. 29-35

Keywords: 水树老化,XLPE电缆,注入,硅氧烷,修复

Full-Text   Cite this paper   Add to My Lib

Abstract:

采用了一种硅氧烷修复液对水树老化电缆进行绝缘修复,并对修复效果及水树尖端电场进行了分析和讨论。首先,采用水针电极加速老化系统对10kV交联聚乙烯(XLPE)电缆样本绝缘进行高频高压老化,直到电缆介质损耗因数达到20%左右。此后,通过压力注入式修复系统从老化样本缆芯注入修复液,修复液渗透进入绝缘进行修复。通过比较修复前后电缆介质损耗因数和击穿电压的变化,发现随着修复时间的延长,老化电缆的绝缘性能逐渐恢复到新电缆水平;同时,通过显微镜观察到水树空洞被反应生成的有机化合物有效填充,达到了消除绝缘层微孔中水分的效果。此外,通过修复液直接与水反应实验和电场有限元仿真结果,进一步证实该修复液能有效提升水树老化电缆的绝缘性能。结果表明,修复液能渗透到水树区并修复水树老化电缆。

References

[1]  Ross R, Smit J J. Composition and growth of water trees in XLPE[J]. IEEE Transactions on Electrical Insulation, 1992, 27(3): 519-533.
[2]  Bertini G J, Vincent G A. Cable rejuvenation mechanisms[C]. IEEE Power Energy Society Insulated Conductor Committee, Reno, NV, 2006: 1-8.
[3]  Zhu Xiaohui. The repair liquid injection technology of XLPE cable for repairing water tree[J]. High Voltage Engineering, 2004, 30(S1): 16-17.
[4]  Bertini G J, Vincent Gary A. Advances in chemical rejuvenation of submarine cables[C]. International Conference on Insulated Power Cables, Versailles France, 2007: 265-269.
[5]  郑晓泉. 在绝缘诊断实验技术的发展中了解水树机理[J]. 电线电缆, 2001(5): 26-31.
[6]  Zheng Xiaoquan. Understanding water treeing mechanisms in the development of diagnostic test method[J]. Electric Wire and Cable, 2001(5): 26-31.
[7]  Steven Boggs, John Densley, Jinbo Kuang. Mechanism for impulse conversion of water trees to electrical trees in XLPE[J]. IEEE Transactions on Power Delivery, 1998, 13(2): 310-315.
[8]  金天雄, 黄兴溢, 江平开, 等. 用有限元法分析水树尺寸对电场分布的影响[J]. 高电压技术, 2008, 34(3): 489-491, 564.
[9]  Steennis E F, Kreuger F H. Water treeing in polyethylene cables[J]. IEEE Transactions on Electrical Insulation, 1990, 25(5): 989-1028.
[10]  Auckland D W, Varlow B R, Syamsuar M. Mechanical aspects of water treeing[J]. IEEE Transactions on Electrical Insulation, 1991, 26(4): 790-797.
[11]  Chen J L, Filippini J C. The morphology and behavior of the water tree[J]. IEEE Transactions on Electrical Insulation, 1993, 28(2): 271-286.
[12]  Bertini G J, Keitges Norman E. Silicone injection: better with pressure[C]. IEEE Power Energy Society Insulated Conductor Committee, 2009: 1-7.
[13]  Stagi W R. Cable injection technology[C]. IEEE Transmission and Distribution Conference, Latin America, 2006: 1-4.
[14]  Nannery P R, Tarpey J W, Lacenere J S, et al. Extending the service life of 15 kV polyethylene URD cable using silicone liquid[J]. IEEE Transactions on Power Delivery, 1989, 4(4): 1991- 1996.
[15]  Bertini G J. Accelerated aging of rejuvenated cables- part II[C]. IEEE Power Energy Society Insulated Conductor Committee, 2005: 1-6.
[16]  Bertini G J. New developments in solid dielectric life extension technology[C]. IEEE International Symposium on Electrical Insulation (ISEI), 2004: 527-531.
[17]  朱晓辉.修复水树老化 XLPE 电缆的修复液注入技术[J]. 高电压技术, 2004, 30(S1): 16-18.
[18]  Chatterton W J, Dionne J. Chemical treatment of URD cables[C]. IEEE Electrical Insulation Conference, 2009: 500-503.
[19]  蒋仁言. 威布尔模型族[M]. 北京: 科学出版社, 1998.
[20]  Kim Chonung, Huang Xingyi, Jiang Pingkai, et al. Influences of water tree dimensions on its internal electric field distributions based on FEM[J]. High Voltage Engineering, 2008, 34(3): 489-491, 564.
[21]  Andrew J Thomas, Tapan K Saha. A new dielectric response model for water tree degraded XLPE insulation-Part A: model development with small sample verification [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2008, 15(4): 1131-1143.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133