全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

含分布式风电的配电网预防性重构

, PP. 172-177

Keywords: 分布式风电,配电网,预防性重构,混合粒子群算法

Full-Text   Cite this paper   Add to My Lib

Abstract:

分布式风电的接入不仅改变了放射状配电网的潮流分布,且其出力的随机性与间歇性给配电网运行带来了一定的风险。本文考虑风电功率预测,并结合配变负荷预测数据,以线路过载和电压越限两个指标构造风险目标函数,搜索未来24h风险最低的网络结构,通过预防性重构,降低电网的运行风险。针对预防性重构提出了一种混合粒子群算法,采用无不可行解的编码规则,既提高了搜索速度又有助于找到全局最优解。算例仿真证实了本模型和算法的有效性。

References

[1]  刘吉臻, 柳玉, 曾德良, 等. 单一风电场的短期负荷调度优化策略[J]. 中国科学E辑, 2012, 42(4): 437- 442.
[2]  Liu Jizhen, Liu Yu, Zeng Deliang, et al. Optimal short-term load dispatch strategy in wind form[J]. Science in China(Series E), 2012, 42(4): 437-442.
[3]  何禹清, 彭建春, 文明, 等. 含风电的配电网重构场景模型及算法[J]. 中国电机工程学报2010, 30(28): 15-18.
[4]  He Yuqing, Peng Jianchun, Wen Ming, et al. Scenario model and algorithm for the reconfiguration of distribution network with wind power generators[J]. Proceedings of the CSEE, 2010, 30(28): 15-18.
[5]  Koichi Nara, Atsushi Shiose, Minoru Kitagawa, Toshihisa Ishihara. Implementation of genetic algorithm for distribution systems loss minimum reconfiguration[J]. Transactions on Power Systems, 1992, 7(3): 1044-1050.
[6]  Juan Carlos Cebrian, Nelson Kagan. Reconfiguration of distribution networks to minimize loss and disruption costs using genetic algorithms[J]. Electric Power Systems Research, 2010, 80(1): 53-62.
[7]  Anil Swarnkar, Nikhil Gupta, K R Niazi, A novel codification for meta-heuristic techniques used in distribution network reconfiguration[J]. Electric Power Systems Research, 2011, 81(7): 1619-1626.
[8]  R C Eberhart, Y Shi. Comparing inertia weights and constriction factors in particle swarm optimization[C]. in: Proceeding of the IEEE Congress on Evolutionary Computation, San Diego, USA, 2000: 84-88.
[9]  张栋, 张刘春, 傅正财. 基于改进禁忌算法的配电网络重构[J]. 电工技术学报, 2005, 20 (11): 60-64.
[10]  Zhong Dong, Zhang Liuchun, Fu Zhengcai. Network reconfiguration in distribution systems using a modified TS algorithm[J]. Transactions of China Electrotechnical Society, 2005, 20(11): 60-64.
[11]  Enrico Carpaneto, Gianfranco Chicco. Distribution system minimum loss reconfiguration in the Hyper- Cube ant colony optimization framework[J]. Electric
[12]  Power Systems Research, 2008, 78: 2037-2045.
[13]  刘自发, 葛少云, 余贻鑫. 一种混合智能算法在配电网络重构中的应用[J]. 中国电机工程学报, 2005, 25(15): 73-78.
[14]  Liu Zifa, Ge Shaoyuan, Yu Yixin, A hybrid intelligent algorithm for loss minimum reconfiguration in distribution networks[J]. Proceedings of the CSEE, 2005, 25(15): 73-78
[15]  Ahmed R. Abul’Wafa. A new heuristic approach for optimal reconfiguration in distribution systems[J]. Electric Power Systems Research, 2011, 81: 282-289.
[16]  A Y Abdelaziz, F M Mohammed, S F Mekhamer, et al. Distribution systems reconfiguration using a modified particle swarm optimization algorithm[J]. Electric Power Systems Research, 2009, 79: 1521-1530.
[17]  刘健, 毕鹏翔, 杨文宇, 等. 配电网理论及应用[M]. 北京: 中国水利水电出版社, 2007.
[18]  孙元章, 吴俊, 李国杰, 等. 基于风速预测和随机规划的含风电场电力系统动态经济调度[J]. 中国电机工程学报, 2009, 29(4): 41-47.
[19]  Sun Yuanzhang, Wu Jun, Li Guojie, et al. Dynamic economic dispatch considering wind power pene- tration based on wind speed forecasting and stochastic programmingJ. Proceedings of the CSEE, 2009, 29(4): 41-47.
[20]  James W Taylor, Patrick E McSharry, Roberto Buizza, et al. Wind power density forecasting using ensemble predictions and time series models[J]. IEEE Transactions on Energy Conversion, 2009, 24(3): 775-782.
[21]  李振坤, 陈星莺, 余昆, 等. 配电网重构的混合粒子群算法[J]. 中国电机工程学报, 2008, 28(31): 35-41.
[22]  Li Zhenkun, Chen Xingying, Yu Kun. Hybrid particle swarm optimization for distribution network recon- figuration[J]. Proceedings of the CSEE, 2008, 28(31): 35-41.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133