全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于集合经验模态分解和小波神经网络的短期风功率组合预测

, PP. 137-144

Keywords: 风功率,预测,集合经验模态分解,小波神经网络,组合模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

从挖掘风功率特性出发,提出一种基于集合经验模态分解(EEMD)和小波神经网络(WNN)的新型风功率组合预测模型。首先对风功率序列进行集合经验模态分解,以降低风功率序列的非平稳性特征;其次基于相空间重构挖掘各子序列的统计特性,以避免预测模型输入维数选取的随意性;然后对各子序列建立小波神经网络预测模型;最后叠加各子序列预测结果得到风功率预测值。实例研究表明本文所提的组合预测模型具有较高的预测精度和较大的工程应用潜力。

References

[1]  张丽英, 叶廷路, 辛耀中, 等. 大规模风电接入电网的相关问题及措施[J]. 中国电机工程学报, 2010, 30(25): 1-9.
[2]  Zhang Liying, Ye Tinglu, Xin Yaozhong, et al. Problems and measures of power grid accommodating large scale wind power[J]. Proceedings of the CSEE, 2010, 30(25): 1-9.
[3]  Pei Y C, Pedersen T, Bak J B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010, 25(2): 667-676.
[4]  冬雷, 王丽婕, 高爽. 基于混沌时间序列的大型风电场发电功率预测建模与研究[J]. 电工技术学报, 2008, 23(12): 125-129.
[5]  Dong Lei, Wang Lijie, Gao Shuang. Modeling and analysis of prediction of wind power generation in the large wind farm based on chaotic time series[J]. Transactions of China Electrotechnical Society, 2008, 23(12): 125-129.
[6]  Rajesh G K, Krithika S. Day-ahead wind speed forecasting using f-ARIMA models[J]. Renewable Energy, 2009, 34(5): 1388-1393.
[7]  Peiyuan C, Pedersen T, Bak J B, et al. ARIMA-based time series model of stochastic wind power generation[J]. IEEE Transactions on Power Systems, 2010, 25(2): 667-676.
[8]  Cadenas E, Rivera W. Wind speed forecasting in three different regions of Mexico, using a hybrid ARIMA-ANN model[J]. Renewable Energy, 2010, 35(7): 2732-2738.
[9]  杨锡运, 孙宝君, 张新房, 等, 基于相似数据的支持向量机短期风速预测仿真研究[J]. 中国电机工程学报, 2012, 32(4): 35-41.
[10]  Yang Xiyun, Sun Baojun, Zhang Xinfang, et al. Short-term wind speed forecasting based on support vector machine with similar data[J]. Proceedings of the CSEE, 2012, 32(4): 35-41.
[11]  Monfared M, Rastegar H, Kojabadi H M. A new strategy for wind speed forecasting using artificial intelligent methods[J]. Renewable Energy, 2009, 34(5): 845-848.
[12]  Huang N E, Shen Z, Long S R. The empirical mode decomposition and the Hilbert spectrum for nonlinear and-non-stationary time series analysis [J]. Proceedings of the Royal Society Soc Land, 1998, 454(1971): 903-995.
[13]  Wu Z, Huang N E. Ensemble empirical mode decomposition: a noise-assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009, 1(1): 1-41.
[14]  孙斌, 姚海涛, 刘婷, 基于高斯过程回归的短期风速预测[J]. 中国电机工程学报, 2012, 32(29): 104-109.
[15]  Sun Bin, Yao Haitao, Liu Ting. Short-term wind speed forecasting based on Gaussian process regression model[J]. Proceedings of the CSEE, 2012, 32(29): 104-109.
[16]  Kim H S, Eykholt R, Salas J D. Nonlinear dynamics, delay times and embedding windows[J]. Physica D, 1999, 127: 48-60.
[17]  罗欣, 周渝慧, 郭宏榆. 基于混沌因子及相空间重构后的神经网络短期电价预测的研究[J]. 继电器, 2008, 36(1): 48-52.
[18]  Luo Xin, Zhou Yuhui, Guo Hongyu. Short-term price forecasting based on chaotic property and phase space recostructed neural networks[J]. Relay, 2008, 36(1): 48-52.
[19]  Chen Y, Peter B L, Guan C, et al. Short-term load Forecasting: similar day-based wavelet neural networks[J]. IEEE Transactions on Power Systems, 2010, 25(1): 322-330.
[20]  Guan C, Peter B L, Michel L D, et al. Very short-term load forecasting: wavelet neural networks with Data Pre-Filtering[J]. IEEE Transactions on Power Systems, 2013, 28(1): 30-41.
[21]  侯逸文, 沈炯, 李益国. 基于小波神经网络的火电单元机组负荷系统建模仿真研究[J]. 中国电机工程学报, 2003, 23(10): 220-224.
[22]  Hou Yiwen, Shen Jiong, Li Yiguo. A simulation study on load modeing of a thermal power unit based on wavelet neural networks[J]. Proceedings of the CSEE, 2003, 23(10): 220-224.
[23]  王丽婕, 冬雷, 廖晓钟, 等, 基于小波分析的风电场短期发电功率预测[J]. 中国电机工程学报, 2009, 29(28): 30-33.
[24]  Wang Lijie, Dong Lei, Liao Xiaozhong, et al, Short-term power prediction of a wind farm based on wavelet analysis[J]. Proceedings of the CSEE, 2009, 29(28): 30-33.
[25]  张春晓, 张涛. 基于最小二乘支持向量机和粒子群算法的两相流含油率软测量方法[J]. 中国电机工程学报, 2010, 30(2): 86-91.
[26]  Zhang Chunxiao, Zhang Tao. Soft measurement method for oil holdup of two phase flow based on least squares support vector machine and particle swarm optimization[J]. Proceedings of the CSEE, 2010, 30(2): 86-91.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133