全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

小型飞轮储能系统高温超导磁悬浮轴承

, PP. 181-186

Keywords: 高温超导磁悬浮轴承,飞轮储能,临界转速,能量损耗

Full-Text   Cite this paper   Add to My Lib

Abstract:

介绍了采用氧化物超导体钇钡铜氧(YBCO)准单畴块材作为定子构件、钕铁硼永磁体作为转子构件的立式全超导磁悬浮轴承初步研究结果。其中,转子系统由转轴、永磁体和飞轮共同组成,在三相调频感应电机驱动下,转子系统最高试验转速可达15000r/min。初步测试结果(0~200Hz)显示,在转动频率f0接近25Hz系统发生共振,共振时转子最大径向摆动约为±170μm。在35~200Hz范围内转子运行状态稳定,最大径向摆动约为±50μm。实验结果显示,超导磁悬浮轴承转动损耗主要来自磁滞损耗和涡流损耗,而磁场分布不均匀性与超导定子材料的磁通蠕动可能是导致转动损耗的主要原因。

References

[1]  Hull J R. Superconducting bearings[J]. Supercon- ductor Science and Technology, 2000, 13(2): R1-R15.
[2]  Wolsky A M. An overview of flywheel energy systems with HTS bearings[J]. Superconductor Science and Technology, 2002, 15(5): 836-837.
[3]  Strasik M, Johnson P E, Day A C, et al. Design, fabrication, and test of a 5-kWh/100-kW flywheel energy storage utilizing a high-temperature superconducting bearing[J]. IEEE Transactions on Applied Superconductivity, 2007, 17(2): 2133-2137.
[4]  Strasik M, Hull J R, Mittleider J A, et al. An overview of Boeing flywheel energy storage systems with high-temperature superconducting bearings[J]. Superconductor Science and Technology, 2010, 23(3): 034021. 1-034021. 5.
[5]  Werfel F N, Floegel Delor U, Rothfeld R, et al. Superconductor bearings, flywheels and transportation [J]. Superconductor Science and Technology, 2012, 25(1): 014007. 1-014007. 16.
[6]  朱圣良, 袁春燕. 高温超导体磁悬浮轴承在低温液体泵中应用的可行性分析[J]. 低温与超导, 2011, 39(2): 25-29, 80.
[7]  Zhu Shengliang, Yuan Chunyan. The feasibility analysis of high-temperature superconducting magnetic bearings’ application in cryogenic liquid pumps[J]. Superconductivity, 2011, 39(2): 25-29, 80.
[8]  Werfel F N, Floegel-Delor U, Rothfeld R, et al. Modelling and construction of a compact 500 kg HTS magnetic bearing[J]. Superconductor Science and Technology, 2005, 18(2): S19-S23.
[9]  Koshizuka N. R&D of superconducting bearing technologies for flywheel energy storage systems[J]. Physica C: Superconductivity, 2006, 445: 1103-1108.
[10]  Fang J R, Lin L Z, Yan L G et al. A new flywheel energy storage system using hybrid superconducting magnetic bearings[J]. IEEE Transactions on Applied Superconductivity, 2001, 11(1): 1657-1660.
[11]  汪黎莉. 超导磁悬浮飞轮储能系统的研究[D]. 武汉: 华中科技大学, 2007.
[12]  李永亮, 方进, 郭明珠. 一种新型超导混合磁悬浮轴承的悬浮力特性分析[C]. 第九届全国超导学术研讨会, 西安, 2007: 221-225.
[13]  邓自刚, 王家素, 王素玉, 等. 高温超导磁悬浮轴承研发现状[J]. 电工技术学报, 2009, 24(9): 1-8.
[14]  Deng Zigang, Wang Jiasu, Wang Suyu, et al. Research and Development Status of High Temperature Superconducting Magnetic Bearings[J]. Transactions of China Electrotechnical Society, 2009, 24(9): 1-8.
[15]  Tang J G, Liu G, Fang J C. Superconducting energy storage flywheel——an attractive technology for energy storage[J]. Journal of Shanghai Jiaotong University (Science), 2010, 15(1): 76-83.
[16]  Luo Y, Takagi T, Miya K. Reduction of levitation decay in high Tc superconducting magnetic bearings[J]. Cryogenics, 1999, 39(4): 331-338.
[17]  Strasik M, Hull J R, Johonson P E, et al. Performance of a conduction-cooled high-temperature supercon- ducting bearing[J]. Materials Science and Engineering: B, 2008, 151(3): 195-198.
[18]  Werfel F N, Flögel Delor U, Rothfeld R, et al. HTS magnetic bearings[J]. Physica C: Superconductivity, 2002, 372: 1482-1468.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133