Xue Yusheng. Space-time cooperative framework for defending blackouts part I from isolated defense lines to coordinated defending[J]. Automation of Electric Power Systems, 2006, 30(11): 1-9.
Liu Daowei, Xie Xiaorong, Mu Gang, et al. An on-line voltage stability index of power system based on synchronized phasor mesurement[J]. Proceedings of the CSEE, 2005, 25(1): 13-17.
[5]
Rajapakse A D, Gomez F, Nanayakkara K, et al. Rotor angle instability prediction using post-disturbance voltage trajectories[J]. IEEE Transactions on Power Systems, 2010, 25(2): 947-956.
[6]
Phadke A G, Thorp J S. Synchronized phasor measurements and their applications[M]. New York: Springer, 2008.
[7]
Kamwa I, Pradhan A K, Joos G. Adaptive phasor and frequency-tracking schemes for wide-area protection and control[J]. IEEE Transactions on Power Delivery, 2011, 26(2): 744 - 753.
[8]
Adamiak M G, Apostolov A P, Begovic M M, et al. Wide area protection technology and infrastructures [J]. IEEE Transactions on Power Delivery, 2006, 21(2): 601-609.
[9]
Eissa M M, Masoud M E, Elanwar M M M. A novel backup wide area protection technique for power transmission grids using phasor measurement unit[J]. IEEE Transactions on Power Delivery, 2010, 25(1): 270-278.
He Zhiqin, Zhang Zhe, Yin Xianggen, et al. A novel wide area backup protection algorithm based on fault voltage comparison[J]. Transactions of China Electrote- chnical Society, 2012(7): 274-283.
He Jinghan, Zhu Guanglei, Bo Zhiqian. Integrated protection for power systems based on the multi-agent technology[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 141-147.
Yin Xianggen, Wang Yang, Zhang Zhe. Zone-division and tripping strategy for limited wide area protection adapting to smart grid[J]. Proceedings of the CSEE, 2010, 30(7): .
[16]
Su Sheng, Li K K, Chan W L, et al. Adaptive agent-based wide-area current differential protection system[J]. IEEE Transactions on Industry Applications, 2010, 46(5): 2111-2117.
[17]
Serizawa Y, Myoujin M, Kitamura K, et al. Wide-area current differential backup protection employing broadband communications and time transfer systems[J]. IEEE Transactions on Power Delivery, 1998, 13(4): 1046-1052.
Ma Jing, Li Jinlong, Wang Zengping, et a1. Wide- area back-up protection based on fault correlation factor[J]. Proceedings of the CSEE, 2010, 30(31): 100-107.
[20]
Tang J, McLaren P G. A wide area differential backup protection scheme for shipboard application[J]. IEEE Transactions on Power Delivery, 2006, 21(3): 1183- 1190.
[21]
Lin X N, Li Z T, Wu K C, et al. Principles and implementations of hierarchical region defensive systems of power grid[J]. IEEE Transactions on Power Delivery, 2009, 24(1): 30-37.
Li Zhenxing, Yin Xianggen, Zhang Zhe, et al. Algorithm of wide-area protection on comparison of current phase and amplitude[J]. Transactions of China Electrotechnical Society, 2013(1): 242-250.
Wang Yang, Yin Xianggen, Zhang Zhe, et a1. Wide area protection based on genetic information fusion technology[J]. Transactions of China Electrotechnical Society, 2010, 25(8): 174-179.
Li Zhenxing, Yin Xianggen, Zhang Zhe, et al. A study of wide-area protection algorithm based on integrated impedance comparison[J]. Transactions of China Electrotechnical Society, 2012, 27(8): 179-186.
[28]
Miao S H, Liu P, Lin X N. An adaptive operating characteristic to improve the operation stability of percentage differential protection[J]. IEEE Transactions on Power Delivery, 2010, 25(3): 1410-1417.
Zhang Zhaoyun, Liu Hongjun, Yue Wei, et al. Sampled values based differential protection for line differential protection[J]. Automation of Electric Power Systems, 2011, 35(12): 76-79.