Hauer A J F, Trudnowski D J, DeSteese J G. A perspective on wams analysis tools for tracking of oscillatory dynamics[C]. IEEE Power Engineering Society General Meeting, 2007: 1-10.
[2]
Far H G, Banakar H, Pei L, et al. Damping inter area oscillations by multiple modal selectivity method[J], IEEE Transactions on Power Systems, 2009, 24(2): 766-775.
[3]
Aboul-Ela M E, Sallam A A, McCalley J D, et al. Damping controller design for power system oscillations using global signals[J]. IEEE Transactions on Power Systems, 1996, 11(2): 767-773.
[4]
Yang Z, Bose A. Design of wide-area damping controllers for inter-area oscillations[J]. IEEE Transac- tions on Power Systems, 2008, 23(3): 1136-1143.
Chang Naichao, Lan Zhou, Gan Deqiang, et al. A survey on applications of wide area measurement system in power system analysis and control [J]. Power System Technology, 2005, 29(10): 46-52.
[7]
Wu Hongxia, Tsakalis K S, Heydt G T. Evaluation of time delay effects to wide-area power system stabilizer design[J]. IEEE Transactions on Power Systems, 2004, 19(4): 1935-1941.
Yao Wei, Wen Jinyu, Cheng Shijie, et al. Design of wide-area supplementary damping controller of SVC considering time delays [J]. Transactions of China Electrotechnical Society, 2012, 27 (3): 239-246.
[10]
Jia H, Yu X. A simple method for power system stability analysis with multiple time delays[C]. In Power and Energy Society General Meeting- Conversion and Delivery of Electrical Energy in the 21st Century, IEEE, 2008: 1-7.
[11]
L Zhaoyan, Z Chengzhi, J Quanyuan. Stability analysis of time delayed power system based on cluster treatment of characteristic roots method[C]. In Power and Energy Society General Meeting- Conversion and Delivery of Electrical Energy in the 21st Century, IEEE, 2008: 1-6.
[12]
Silviu-lulian Niculescu, Keqin Gu. Advances in time delay systems [M]. Berlin: Springer-Verlag, 2004.
[13]
X Shengyuan, Lam J. On equivalence, efficiency of certain stability criteria for time-delay systems[J]. IEEE Transactions on Automatic Control, 2007, 52(1): 95-101.
[14]
Zribi M, Mahmoud M S, Karkoub M, et al. H ∞ controllers for linearised time-delay power systems[J]. IEE Proceedings on Generation, Transmission and Distribution, 2000, 147(5): 401-408.
Jiang Quanyuan, Zhang Pengxiang, Cao Yijia. Widearea FACTS damping control in consideration of feedback signals’ time delays[J]. Proceedings of the CSEE, 2006, 26(7): 82-88.
Shi Jie, Wang Chengshan. Design of state feedback controller for wide-area power system based on linear matrix inequities theory[J]. Power System Technology, 2008, 32(6): 36-41.
Hu Zhijian, Zhao Yishu. Rubust stability control of power systems based on WAMS with signal transmission delays[J]. Proceedings of the CSEE, 2010, 30(19): 37-43.
[21]
Yao W, Jiang L, Wu Q H. et al. Delay-dependent stability analysis of the power system with a wide- area damping controller embedded[J]. IEEE Transactions on Power Systems, 2011, 26(1): 233-240.
[22]
Gouaisbaut F, peaucelle D. A note on the stability of time delay systems[C]. In Robust Control Design 2005, Toulouse, Sept 2005: 1-13.
[23]
Min Z , Shumin F. Stability of linear systems with time delay: a new delay fractioning based Lyapunov -Krasovskii approach[C]. IEEE International Conference on Control and Automation, 2007: 937-941.
[24]
俞立. 鲁棒控制—线性矩阵不等式处理方法[M]. 北京: 清华大学出版社, 2002.
[25]
Boyd S, Ghaoui L EI, Feron E, et al. Linear matrix inequality in systems and control theory[M]. Philadelphia, PA: SIAM, 1994.
[26]
Safonov M G, Chiang R Y, Limebeer D J N. Optimal hankel model reduction for nonminimal systems[J]. IEEE Transactions on Automatic Control, 1990, 35(4): 496-502.
[27]
Kundur P. Power system stability and control [M]. New York: McGraw Hill, 1994.