全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

多时间尺度协调控制的独立微网能量管理策略

, PP. 122-129

Keywords: 微电网,经济调度,日前调度,日内调度,储能寿命损耗,雨流计数法,需求侧管理

Full-Text   Cite this paper   Add to My Lib

Abstract:

作为智能电网中管理分布式电源的有效技术手段之一,微网得到了越来越多的重视。在全面考虑柴油发电机组与需求侧管理负荷运行特性的基础上,建立了适用于独立型微网能量优化模型。此外,模型采用雨流计数法精确考虑网内储能设备的运行成本。优化模型以微网运行成本最低为目标,从日前与日内两个时间尺度对微网能量进行协调控制,优化各发电单元和需求侧管理负荷的启停机状态及其有功出力值。最后以某实际微网为例,验证了本文所提模型及算法的有效性。

References

[1]  王成山, 李鹏. 分布式发电、微网与智能配电网的发展与挑战[J]. 电力系统自动化, 2010, 34(2): 10-14, 23.
[2]  Wang Chengshan, Li Peng. Development and challenges of distributed generation, the micro-grid and smart distribution system[J]. Automation of Electric Power Systems, 2010, 34(2): 10-14, 23.
[3]  Lasseter R H, Piagi P. Microgrid: a conceptual solution[C], Proceedings of IEEE 35th Annual Power Electrics Specialists Conference, June 20-25, 2004, Aachen, Germany: 4285-4290.
[4]  李振杰, 袁越. 智能微网——未来智能配电网新的组织形式[J]. 电力系统自动化, 2009, 33(17): 42-48.
[5]  Li Zhenjie, Yuan Yue. Smart microgrid——a noval organization form of smart distribution grid in the future[J]. Automation of Electric Power Systems, 2009, 33(17): 42-48.
[6]  陈昌松, 段善旭, 殷进军, 等. 基于发电预测的分布式发电能量管理系统[J]. 电工技术学报, 2010, 25(3): 150-156.
[7]  Chen Changsong, Duan Shanxu, Yin Jinjun, et al. Energy management system of distributed generation based on power forecasting[J]. Transactions of China Electrotechnical Society, 2010, 25(3): 150-156.
[8]  陈昌松, 段善旭, 蔡涛, 等. 基于改进遗传算法的微网能量管理模型[J]. 电工技术学报, 2013, 28(4): 196-201.
[9]  Chen Changsong, Duan Shanxu, Cai Tao, et al. Microgrid energy management model based on improved genetic arithmetic[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 196-201.
[10]  Katiraei F, Iravani M R. Power management strategies for a microgrid with multiple distributed generation units[J]. IEEE Transaction on Power Systems, 2006, 21(4): 1821-1831.
[11]  向月, 刘俊勇, 魏震波, 等. 可再生能源接入下新型可中断负荷发展研究[J]. 电力系统保护与控制, 2012, 40(5): 148-155.
[12]  Xiang Yue, Liu Junyong, Wei Zhenbo, et al. Research on development of new interruptible load with renewable energy access[J]. Power System Protection and Control, 2012, 40(5): 148-155.
[13]  吴雄, 王秀丽, 崔强. 考虑需求侧管理的微网经济优化运行[J]. 西安交通大学学报, 2013, 47(6): 90-96.
[14]  Wu Xiong, Wang Xiuli, Cui Qiang. Optimal operation of microgrid considering demand side management[J]. Journal of Xi’an Jiaotong University, 2013, 47(6): 90-96.
[15]  陈洁, 杨秀, 朱兰, 等. 不同运行调度模式下微网经济运行对比分析[J]. 电力自动化设备, 2013, 33(8): 106-113.
[16]  Chen Jie, Yang Xiu, Zhu Lan, et al. Comparison of microgrid economic operation among different dispatch modes[J]. Electric Power Automation Equipment, 2013, 33(8): 106-113.
[17]  王新刚, 艾芊, 徐伟华, 等. 含分布式发电的微电网能量管理多目标优化[J]. 电力系统保护与控制, 2009, 37(40): 79-83.
[18]  Wang Xingang, Ai Qian, Xu Weihua, et al. Multi-objective optimal energy management of microgrid with distributed generation[J]. Power System Protection and Control, 2009, 37(40): 79-83.
[19]  周晓燕, 刘天琪, 沈浩东, 等. 含多种分布式电源的微电网经济调度研究[J]. 电工电能新技术, 2013, 32(1): 5-8, 18.
[20]  Zhou Xiaoyan, Liu Tianqi, Shen Haodong, et al. Research on economic dispatch of microgrid with multi-distributed generation[J]. Advanced Technology of Electrical Engineering and Energy, 2013, 32(1): 5-8, 18.
[21]  Divya KC, Østergaard J. Battery energy storage technology for power systems-an overview[J]. Electric Power Systems Research, 2009, 79(4): 511-520.
[22]  Yuan Y, Zhang XS, Ju P, et al. Determination of economic dispatch of wind farm-battery energy storage system using genetic algorithm[J]. European Transac- tions on Electrical Power, 2012 (In press, DOI: 10.1002/etep.1696).
[23]  郭小鹏, 沙云东, 张军. 基于雨流计数法的随机声疲劳寿命估算方法研究[J]. 沈阳航空工业学院学报, 2009, 26(3): 10-14.
[24]  Guo Xiaopeng, Sha Yundong, Zhang Jun. Random fatigue life estimation based on rain-flow counting method[J]. Journal of Shenyang Institute of Aeronautical Engineering, 2009, 26(3): 10-14.
[25]  夏冬, 吴俊勇, 贺电, 等. 一种新型的风电功率预测综合模型[J]. 电工技术学报, 2011, 26(增刊1): 262-266.
[26]  Xia Dong, Wu Junyong, He Dian, et al. A novel combined model for wind power forecasting based on maximum entropy principle[J]. Transactions of China Electrotechnical Society, 2011, 26(S1): 262-266.
[27]  程其云, 孙才新, 张晓星, 等. 以神经网络与模糊逻辑互补的电力系统短期负荷预测模型机方法[J]. 电工技术学报, 2004, 19(10): 53-58.
[28]  Cheng Qiyun, Sun Caixin, Zhang Xiaoxing, et al. Short-term forecasting model and method for power system based on complementation of neural network and fuzzy logic[J]. Transactions of China Electrote- chnical Society, 2004, 19(10): 53-58.
[29]  陈民铀, 朱博, 徐瑞林, 等. 基于混合智能技术的微电网剩余负荷超短期预测[J]. 电力自动化设备, 2012, 32(5): 13-18.
[30]  Chen Minyou, Zhu Bo, Xu Ruilin, et al. Ultra-short term forecasting of microgrid surplus load based on hybrid intelligence techniques[J]. Electric Power Automation Equipment, 2012, 32(5): 13-18.
[31]  Ezzati S M, Yousefi G R, Pedram M M, et al. Security-constrained unit commitment based on hybrid benders decomposition and mixed integer non-linear programming[C]. 2010 IEEE International Energy Conference,Manama, 2010: 233-237.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133