龚敏明, 时玮, 姜久春, 等. 纯电动公交车锂离子动力电池的使用条件控制[J]. 吉林大学学报(工学版), 2013. Gong Minming, Shi Wei, Jiang Jiuchun, et al. Operating conditions control of large format LiMn 2 O 4 battery for electric bus[J]. Journal of Jilin University (Engineering and Technology Edition), 2013.
[2]
罗玉涛, 张智明, 赵克刚. 一种集散式动力电池组动态均衡管理系统[J]. 电工技术学报, 2008, 23(8): 131-136, 142. Luo Yutao, Zhang Zhiming, Zhao Kegang. A novel distributed equilibrium and management system of dynamic battery pack[J]. Transactions of China Electrotechnical Society, 2008, 23(8): 131-136, 142.
[3]
王震坡, 孙逢春, 林程. 不一致性对动力电池组使用寿命影响的分析[J]. 北京理工大学学报, 2006, 26(7): 577-580. Wang Zhenpo, Sun Fengchun, Lin Cheng. An analysis on the influence of inconsistencies upon the service life of power battery packs[J]. Transactions of Beijing Institute of Technology, 2006, 26(7): 577-580.
[4]
陈大分, 姜久春, 王占国, 等. 动力锂离子电池分布参数等效电路模型研究[J]. 电工技术学报, 2013, 28(7): 169-176. Chen Dafen, Jiang Jiuchun, Wang Zhanguo, et al. Research on distribution parameters equivalent circuit model of power lithium-ion batteries[J]. Transactions of China Electrotechnical Society, 2013, 28(7): 169-176.
[5]
马泽宇, 姜久春, 文锋, 等. 储能系统用梯次利用锂电池组均衡策略设计[J]. 电力系统自动化, 2013, 38(3): 106-111, 117. Ma Zeyu, Jiang Jiuchun, Wen Feng, et al. Design of equilibrium strategy of echelon use li-ion battery pack for battery energy storage system[J]. Automation of Electric Power Systems, 2013, 38(3): 106-111, 117.
[6]
吴宁宁, 雷向利, 徐华, 等. 锰酸锂动力电池体系研究[J]. 北京大学学报(自然科学版). 2006, 42(S): 67-71. Wu Ningning, Lei Xiangli, Xu Hua, et al. Research on LiMn 2 O 4 -based power battery system[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(S): 67-71.
[7]
Huang C K, Sakamoto J S, Wolfenstine J, et al. The limits of low-temperature performance of li-ion cells[J]. Journal of the Electrochemical Society, 2000, 147(8): 2893-2896.
[8]
Aoshima T, Okahara K, Kiyohara C, et al. Mechanisms of manganese spinels dissolution and capacity fade at high temperature[J]. Journal of Power Sources, 2001, 97-98: 377-380.
[9]
Sit K, Li P K C, Ip C W, et al. Studies of the energy and power of current commercial prismatic and cylindrical Li-ion cells[J]. Journal of Power Sources, 2004, 125(1): 124-134.
[10]
Walz K A, Johnson C S, Genthe J, et al. Elevated temperature cycling stability and electrochemical impedance of LiMn 2 O 4 cathodes with nanoporous ZrO 2 and TiO 2 coatings[J]. Journal of Power Sources, 2010, 195(15): 4943-4951.
[11]
Zhang Y C, Wang C Y, Tang X D. Cycling degradation of an automotive LiFePO 4 lithium-ion battery[J]. Journal of Power Sources, 2011, 196: 1513-1520.
[12]
Dubarry M, Truchot C, Liaw B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications, partⅡ, degradation mechanism under 2C cycle aging[J]. Journal of Power Sources, 2011, 196: 10336-10343.
[13]
Dubarry M, Truchot C, Liaw B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications Ⅲ, effect of thermal excursions without prolonged thermal aging[J]. Journal of the Electro- chemical Society, 2013, 160(1): 191-199.