全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

锂离子动力电池热老化的路径依赖性研究

, PP. 221-227

Keywords: 纯电动公交车,锰酸锂电池,热漂移测试,路径依赖,衰退机理

Full-Text   Cite this paper   Add to My Lib

Abstract:

以北京奥运会纯电动公交车用90A·h锰酸锂电池为研究对象,将电池放置于温箱中从25℃开始,依次经历0℃、25℃、40℃、60℃和25℃的“热漂移”,在每个温度下对电池依次进行C/20、C/3、C/2、2C/3和1C充放电的基准性能测试,用于量化电池容量、倍率特性和其他性能变化。“热漂移”引起电池容量衰减的根本原因包括活性材料损失、反应动力学衰退和欧姆电阻增加。利用容量增量分析法对实验结果进行分析,结果表明电池经历0~40℃的“热漂移”已经出现容量衰退,而暴露在60℃下会导致不可逆的容量衰退,其主要原因是活性材料损失和反应动力学衰退。实验方法和结论有助于电动汽车在实际应用条件下锂离子动力电池衰退的路径依赖性研究。

References

[1]  龚敏明, 时玮, 姜久春, 等. 纯电动公交车锂离子动力电池的使用条件控制[J]. 吉林大学学报(工学版), 2013. Gong Minming, Shi Wei, Jiang Jiuchun, et al. Operating conditions control of large format LiMn 2 O 4 battery for electric bus[J]. Journal of Jilin University (Engineering and Technology Edition), 2013.
[2]  罗玉涛, 张智明, 赵克刚. 一种集散式动力电池组动态均衡管理系统[J]. 电工技术学报, 2008, 23(8): 131-136, 142. Luo Yutao, Zhang Zhiming, Zhao Kegang. A novel distributed equilibrium and management system of dynamic battery pack[J]. Transactions of China Electrotechnical Society, 2008, 23(8): 131-136, 142.
[3]  王震坡, 孙逢春, 林程. 不一致性对动力电池组使用寿命影响的分析[J]. 北京理工大学学报, 2006, 26(7): 577-580. Wang Zhenpo, Sun Fengchun, Lin Cheng. An analysis on the influence of inconsistencies upon the service life of power battery packs[J]. Transactions of Beijing Institute of Technology, 2006, 26(7): 577-580.
[4]  陈大分, 姜久春, 王占国, 等. 动力锂离子电池分布参数等效电路模型研究[J]. 电工技术学报, 2013, 28(7): 169-176. Chen Dafen, Jiang Jiuchun, Wang Zhanguo, et al. Research on distribution parameters equivalent circuit model of power lithium-ion batteries[J]. Transactions of China Electrotechnical Society, 2013, 28(7): 169-176.
[5]  马泽宇, 姜久春, 文锋, 等. 储能系统用梯次利用锂电池组均衡策略设计[J]. 电力系统自动化, 2013, 38(3): 106-111, 117. Ma Zeyu, Jiang Jiuchun, Wen Feng, et al. Design of equilibrium strategy of echelon use li-ion battery pack for battery energy storage system[J]. Automation of Electric Power Systems, 2013, 38(3): 106-111, 117.
[6]  吴宁宁, 雷向利, 徐华, 等. 锰酸锂动力电池体系研究[J]. 北京大学学报(自然科学版). 2006, 42(S): 67-71. Wu Ningning, Lei Xiangli, Xu Hua, et al. Research on LiMn 2 O 4 -based power battery system[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006, 42(S): 67-71.
[7]  Huang C K, Sakamoto J S, Wolfenstine J, et al. The limits of low-temperature performance of li-ion cells[J]. Journal of the Electrochemical Society, 2000, 147(8): 2893-2896.
[8]  Aoshima T, Okahara K, Kiyohara C, et al. Mechanisms of manganese spinels dissolution and capacity fade at high temperature[J]. Journal of Power Sources, 2001, 97-98: 377-380.
[9]  Sit K, Li P K C, Ip C W, et al. Studies of the energy and power of current commercial prismatic and cylindrical Li-ion cells[J]. Journal of Power Sources, 2004, 125(1): 124-134.
[10]  Walz K A, Johnson C S, Genthe J, et al. Elevated temperature cycling stability and electrochemical impedance of LiMn 2 O 4 cathodes with nanoporous ZrO 2 and TiO 2 coatings[J]. Journal of Power Sources, 2010, 195(15): 4943-4951.
[11]  Zhang Y C, Wang C Y, Tang X D. Cycling degradation of an automotive LiFePO 4 lithium-ion battery[J]. Journal of Power Sources, 2011, 196: 1513-1520.
[12]  Dubarry M, Truchot C, Liaw B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications, partⅡ, degradation mechanism under 2C cycle aging[J]. Journal of Power Sources, 2011, 196: 10336-10343.
[13]  Dubarry M, Truchot C, Liaw B Y, et al. Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications Ⅲ, effect of thermal excursions without prolonged thermal aging[J]. Journal of the Electro- chemical Society, 2013, 160(1): 191-199.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133