Majumdar G, Minato T. Recent and future IGBT evolution[C]. Power Conversion Conference, Nagoya, Japan, 2007: 355-359.
[2]
胡建辉, 李锦庚, 邹继斌. 变频器中的IGBT模块损耗计算及散热系统设计[J]. 电工技术学报, 2009, 24(3): 159-163. Hu Jianhui, Li Jingeng, Zou Jibin. Losses calculation of IGBT module and heat dissipation system design of inverters[J]. Transactions of China Electrotechnical Society, 2009, 24(3): 159-163.
[3]
梅杨, 孙凯, 黄立培. 基于逆阻式IGBT的三相/单相矩阵式变换器[J]. 电工技术学报, 2007, 22(3): 91-95. Mei Yang, Sun Kai, Huang Lipei. Three-phase to single-phase matrix converter using RB-IGBT[J]. Transactions of China Electrotechnical Society, 2007, 22(3): 91-95.
[4]
唐勇, 陈明, 汪波, 等. 场终止型IGBT开关瞬态模型[J]. 中国电机工程学报, 2011, 31(30): 54-60. Tang Yong, Chen Ming, Wang Bo. Switching transient model of field-stop IGBT[J]. Proceedings of the CSEE, 2011, 31(30): 54-60.
[5]
Lixiang Wei, Richard A Lukaszewski, Thomas A Lipo. Analysis of power cycling capability of IGBT modules in a conventional matrix converter[J]. IEEE Transactions on Industry Applications, 2009, 45(4): 1443-1451.
[6]
Onuki J, Masahiro Koizumi, Masateru Suwa. Reliability of thick Al wire bonds in IGBT modules for traction motor drives[J]. IEEE Transactions on Advanced Packaging, 2000, 23(1): 108-112.
[7]
Hamidi A, Beck N, Thomas K, et al. Reliability and lifetime evaluation of different wire bonding technologies for high power IGBT modules[J]. Microelectronics Reliability, 1999, 39: 1153-1158.
[8]
刘勇, 梁利华, 曲建民. 微电子器件及封装的建模与仿真[M]. 北京: 科学出版社, 2010.
[9]
Zhou Z, Khanniche M S, Igic P, et al. A fast power loss calculation method for long real time thermal simulation of IGBT modules for a three-phase inverter system[J]. Model Electron Devices Fields, 2006, 19(1): 33-46.
[10]
Angus T B, Philip A M, Patrick R P, et al. Exploration of power device reliability using compact device models and fast electro-thermal simulation[J]. IEEE Transactions on Industry Applications, 2008, 44(3): 894-903.
[11]
Scheuermann U. Power cycling lifetime of advanced power modules for different temperature swings[C]. Power Conversion Intelligent Motion, Nuremburg, Germany, 2002: 59-64.
[12]
Hirschmann D, Tissen D, Schröder S, et al. Reliability prediction for inverters in hybrid electrical vehicles[C]. IEEE Power Electronics Specialist Conference, Jeju, Korea, 2006: 1-6.
[13]
罗湘, 汤广福, 温家良, 等. 电压源换流器高压直流输电装置中IGBT 的过电流失效机制[J]. 中国电机工程学报, 2009, 29(33): 1-7. Luo Xiang, Tang Guangfu, Wen Jialiang, et al. Over- current failure mechanism of IGBT within voltage source converter based high voltage direct current[J]. Pcoceedings of the CSEE, 2009, 29(33): 1-7.
[14]
Thébaud J M, Woirgard E, Zardini C, et al. Strategy for designing accelerated aging tests to evaluate IGBT power modules lifetime in real operation mode[J]. IEEE Transactions on Components and Packaging Technologies, 2003, 39(2): 429-438.
[15]
Lu H, Bailey C. Lifetime prediction of an IGBT power electronics module under cyclic temperature loading conditions[C]. 2009 International Conference on Electronic Packaging Technology & High Density Packaging, 2009: 274-279.
[16]
Ciappa M, Carbognani F, Cova P, et al. A novel thermomechanics based lifetime prediction model for cycle fatigue failure mechanisms in power semiconductors[J]. Microelectronics Reliability, 2002, 42(9): 1653-1658.
[17]
Ciappa M, Carbognani F, Fichtner W. Lifetime prediction and design of reliability tests for high- power devices in automotive applications[J]. IEEE Transations on Device and Materials Reliability, 2003, 3(4): 191-196.
[18]
Ramminger S, Wachutka G. Predicting the crack progression in PbSnAg-solder under cyclic loading[C]. In Proceedings of CIPS, Naples, Italy, 2006: 75-80.
[19]
Akira Morozumi, Katsumi Yamada, Tadashi Miyasaka, et al. Reliability of power cycling for IGBT power semiconductor modules[J]. IEEE Transactions on Industry Applications, 2003, 39(3): 665-671.