全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Nuttall自卷积窗的改进FFT谱分析方法

, PP. 59-65

Keywords: Nuttall自卷积窗,改进快速傅里叶变换,谱分析,最小二乘法,插值多项式

Full-Text   Cite this paper   Add to My Lib

Abstract:

建立性能优良的窗函数是提高频谱分析准确度的关键。本文用Nuttall窗进行时域卷积运算构建Nuttall自卷积窗,具有旁瓣性能随卷积次数增加而迅速提升的优点;提出基于Nuttall自卷积窗的改进FFT谱分析方法,采用最小二乘法推导离散频谱插值多项式,建立谐波参数准确求解算法;通过仿真实验验证Nuttall自卷积窗及改进FFT谱分析方法的有效性和准确性。

References

[1]  张介秋, 梁昌洪, 陈砚圃. 一类新的窗函数——卷积窗及其应用[J]. 中国科学: E辑, 2005, 35(7): 773-784.[1] Zhang Jieqiu, Liang Changhong, Chen Yanpu. A new family of windows-convolution windows and their applications[J]. Science in China, Series E: Technological Sciences, 2005, 35(7): 773-784.
[2]  Reljin I, Reljin B, Papic V, et al. New window functions generated by means of time convolution- spectral leakage error[J]. Electrotechnical Conference, Mediterranean, 1998: 878-881.
[3]  温和, 滕召胜, 卿柏元. Hanning自卷积窗及其在谐波分析中的应用[J]. 电工技术学报, 2009, 24(2): 164-169.[4] Wen He, Teng Zhaosheng, Qing Baiyuan. Hanning self-convolution windows and its application to harmonic analysis[J]. Transactions of China Electrotech- nical Society, 2009, 24(2): 164-169.
[4]  温和, 滕召胜, 王一, 等. 基于三角自卷积窗的介损角高精度测量算法[J]. 电工技术学报, 2009, 24(3): 203-208. Wen He, Teng Zhaosheng, Wang Yi, et al. High accuracy dielectric loss angle measurement algorithm based on triangular self-convolution window[J]. Transactions of China Electrotechnical Society, 2009, 24(3): 203-208.
[5]  Grandke T. Interpolation algorithms for discrete Fourier transforms of weighted signals[J]. IEEE Transactions on Instrumentation and Measurement, 1983, 32(2): 350-355.
[6]  Agre D. Interpolation in the frequency domain to improve phase measurement[J]. Measurement, 2008, 41(2): 151-159.
[7]  Offelli C, Petri D. Interpolation techniques for real-time multifrequency waveform analysis[J]. IEEE Transactions on Instrumentation and Measurement, 1990, 39(1): 106-111.
[8]  Pan W, Qian Y S, Zhou E. An improved interpolated FFT algorithm and its application in power harmonics measurement[C]. Proceedings of the IEEE International Conference on Industrial Technology, 1994, 273-277.
[9]  Wen H, Teng Z S, Wang Y, et al. Simple interpolated FFT algorithm based on minimize sidelobe windows for power-harmonic analysis[J]. IEEE Transactions on Power Electronics, 2011, 26(9): 2570-2579.
[10]  Zeng B, Teng Z S. Parameter estimation of power system signals based on cosine self-convolution window with desirable side-lobe behaviors[J]. IEEE Transactions on Power Delivery, 2011, 26(1): 250-257.
[11]  Zeng B, Zhou Y, Teng Z, et al. A novel approach for harmonic parameters estimation under nonstationary situations[J]. International Journal of Electrical Power & Energy Systems, 2013, 44(1): 930-937.
[12]  张介秋, 梁昌洪, 陈砚圃. 基于卷积窗的电力系统谐波理论分析与算法[J]. 中国电机工程学报, 2004, 24(11): 48-52.[3] Zhang Jieqiu, Chen Yanpu, Liang Changhong. Power system harmonic error estimation and simulation based on convolution window[J]. Proceedings of the CSEE, 2004, 24(11): 48-52.
[13]  Jain V K, Collins W L, Davis D C. High-accuracy analog measurements via interpolated FFT[J]. IEEE Transactions on Instrumentation and Measurement, 1979, 28(2): 113-122.
[14]  Cooley J W, Tukey J W. An algorithm for the machine computation of complex fourier series[J]. Mathematics of Computation, 1965, 19(Apr): 297-301.
[15]  Nuttall A. Some windows with very good sidelobe behavior[J]. IEEE Transactions on Acoustics, Speech and Signal Processing, 1981, 29(1): 84-91.
[16]  温和, 滕召胜, 李聪聪, 等. Nuttall 窗加权谐波分析算法及其在电能计量中的应用[J]. 仪器仪表学报, 2009, 30(9): 1823-1828. Wen He, Teng Zhaosheng, Li Congcong, et al. Harmonic analysis algorithm based on Nuttall window and its application in power measurement[J]. Chinese Journal of Scientific Instrument, 2009, 30(9): 1823-1828.
[17]  Wen H, Teng Z S, Wang Y, et al. Spectral correction approach based on desirable sidelobe window for harmonic analysis of industrial power system[J]. IEEE Transactions on Industrial Electronics, 2013, 60(3): 1001-1010.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133