全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

采用HHT振动分析的低压断路器合闸同期辨识

, PP. 154-161

Keywords: 低压断路器,振动分析,合闸同期性,经验模态分解,本征模态函数分量,能量比,神经网络,故障识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

利用振动信号辨识三相合闸不同期故障,应解决有效的振动信号消噪及其故障特征提取方法。提出一种希尔伯特-黄变换(HHT)的低压断路器振动信号分析方法,采用经验模态分解(EMD)有效地提取反映振动信号局部特性的本征模态函数(IMF)分量,以前5阶IMF分量表征振动信号特性且起到信号消噪作用。通过时域特征分析,得出振动信号的峭度和均方值可作为判别机械特性的辅助特征指标。提出前5阶IMF分量能量比及峭度、均方值为特征向量,建立粒子群优化径向基(PSO-RBF)神经网络的低压断路器合闸不同期故障识别模型。实验与仿真结果表明,基于单个传感器振动特性,综合采用时域分析、EMD分解、粒子群优化神经网络等人工智能的合闸同期性故障识别效果良好,为断路器故障尤其是三相合闸同期性振动分析提供了一种新的诊断方法。

References

[1]  常广,张振乾,王毅. 高压断路器机械故障振动诊断综述[J]. 高压电器,2011,47(8): 85-90. Chang Guang,Zhang Zhenqian,Wang Yi. Review on mechanical fault diagnosis of high-voltage circuit breakers based on vibration diagnosis[J]. High Voltage Apparatus,2011,47(8): 85-90.
[2]  孙来军,胡晓光,纪延超. 改进的小波包-特征熵在高压断路器[J]. 中国电机工程学报,2007,27(12): 103-108. Sun Laijun,Hu Xiaoguang,Ji Yanchao. Fault diagnosis for high voltage circuit breakers with improved characteristic entropy of wavelet packet[J]. Procee- dings of the CSEE,2007,27(12): 103-108.
[3]  杨飞,王小华,荣命哲,等. 一种新的中压真空断路器三相同期在线监测方法[J]. 中国电机工程学报,2008,28(12): 139-144. Yang Fei,Wang Xiaohua,Rong Mingzhe,et al. A novel on-line monitoring method for three phase synchronization of medium voltage vacuum circuit breaker[J]. Proceedings of the CSEE,2008,28(12): 139-144.
[4]  Lee D S S,Lithgow B L,Morrison R E. New fault diagnosis of circuit breakers[J]. IEEE Transactions on Power Delivery,2003,18(2): 454-459.
[5]  王晓霞,王涛. 基于粒子群优化神经网络的变压器故障诊断[J]. 高电压技术,2009,34(11): 2362-2367. Wang Xiaoxia,Wang Tao. Power transformer fault diagnosis based on neural network evolved by particle swarm optimization[J]. High Voltage Engineering,2009,34(11): 2362-2367.
[6]  黄建,胡晓光,巩玉楠. 基于经验模态分解的高压断路器机械故障诊断方法[J]. 中国电机工程学报,2011,31(12): 108-113. Huang Jian,Hu Xiaoguang,Gong Yunan. Machinery fault diagnosis of high voltage circuit breaker based on empirical mode decomposition[J]. Proceedings of the CSEE,2011,31(12): 108-113.
[7]  Liu Mingliang,Sun Laijun,Zhen Jianju,et al. Fault diagnosis of high voltage circuit breaker based on multiple entropy strips method[C]. Proceedings of The 6th IEEE Conference on Industrial Electronics and Applications,Beijing,China,2011: 504-508.
[8]  马强,荣命哲,贾申利. 基于振动信号小波包提取和短时能量分析的高压断路器合闸同期性的研究[J]. 中国电机工程学报,2005,25(13): 150-154. Ma Qiang,Rong Mingzhe,Jia Shenli. Study of switching synchronization of high voltage breakers based on the wavelet packets extraction algorithm and short time analysis method[J]. Proceedings of the CSEE,2005,25(13): 150-154.
[9]  缪希仁,王燕. 低压断路器振动特性分析与合闸同期性研究[J]. 电工技术学报,2013,28(6): 81-85. Miao Xiren,Wang Yan. Vibration characteristic analysis and closing synchronization research of low voltage circuit breadkers[J]. Transactions of China Electrotechnical Society,2013,28(6): 81-85.
[10]  张君,韩璞,董泽,等. 基于小波变换的振动信号分析中能量泄漏的研究[J]. 中国电机工程学报,2004,24(10): 238-243. Zhang Jun,Han Pu,Dong Ze,et al. Energy leakage research of wavelet transform application on vibration signature analysis[J]. Proceedings of the CSEE,2004,24(10): 238-243.
[11]  Huang N E,Shen Z,Long S R,et al. The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J]. Proceedings of the Royal Society of London Series A,1998,454: 903-995.
[12]  Vincent H T,Hu S J,Hou Z. Damage detection using empirical mode decomposition method and a com- parison with wavelet analysis[C]. Proceedings of the Second International Workshop on Structure Health Monitoring,Stanford USA,1999: 891-900.
[13]  张惠峰,马宏忠,陈凯,等. 基于振动信号EMD- HT 时频分析的变压器有载分接开关故障诊断[J]. 高压电器,2012,48(1): 76-81. Zhang Huifeng,Ma Hongzhong,Chen Kai,et al. Fault diagnosis of power transformer on-load tap changer based on EMD-HT analysis of vibration signal[J]. High Voltage Apparatus,2012,48(1): 76-81.
[14]  王磊,纪国宜. 基于Hilbert-Huang变换与人工神经网络的风机故障诊断研究[J]. 发电设备,2012,26(2): 100-104. Wang Lei,Ji Guoyi. Study on fan fault diagnosis based on Hilbert-Huang transform and artificial neural network[J]. Power Equipment,2012,26(2): 100-104.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133