全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于动态限的周期非稳定工况的实时故障检测模型

, PP. 95-101

Keywords: 相对主元分析,T2图,非稳定工况,实时故障检测

Full-Text   Cite this paper   Add to My Lib

Abstract:

系统非稳定工况下,传统的多元统计方法难以对多变量参数进行有效的故障检测。针对这些问题,本文给出了动态限和同峰谷的概念;并证明了周期非稳定工况下的多变量参数的T2统计量也是周期性的;然后提出了一种基于动态限的周期非稳定工况的实时故障检测模型,并对模型的实时性和可行性进行了分析。最后将该模型应用于系统周期非稳定工况下的实时故障检测。

References

[1]  Lane S,Martin E B,Morrios A J,et al. Application of exponentially weighted principal component analysis for the monitoring of a polymer film manufacturing process[J]. Transactions of the Institute of Measurement and Control,2003,25(1): 17-35.
[2]  Xun Wang,Uwe Krugerb,Barry Lennox. Recursive partial least squares algorithms for monitoring complex industrial processes[J]. Control Engineering Practice,2003(11): 613-632.
[3]  Chen J H,Liu J L. Mixture principal component analysismodels for process monitoring[J]. Industrial and Engineering Chemistry Research,1999,38(4): 1478-1488.
[4]  Ding S,Zhang P. On the Application of PCA technique to fault diagnosis[J]. Journal of Tsinghua University (Science and Technology),2010,15(2): 138-144.
[5]  文成林,胡静,王天真,陈志国. 相对主元分析及其在数据压缩和故障诊断中的应用研究[J]. 自动化学报,2008 34(9): 1129-1140. Wen Chenglin,Hu Jing,Wang Tianzhen. Relative PCA with applications of data compression and fault diagnosis[J]. Acta Automatica Sinica,2008,34(9): 1129- 1140.
[6]  王天真,汤天浩. 相对主元分析方法及其在故障检测中的应用[J]. 系统仿真学报,2007,19(13): 2889-2894. Wang Tianzhen,Tang Tianhao. Relative principal component analysis algorithm and its application in fault detection[J]. Journal of System Simulation,2007,19(13): 2889-2894.
[7]  RothenhagenKai,FuchsFriedrich Wilhelm,Doubly fed induction generator model-based sensor fault detection and control loop reconfiguration[J]. IEEE Transactions on Industrial Electronics,2009,56(10): 4229-4238.
[8]  Gallagher N B,Wise B M,Bulter S W,et al. Statistical process control tools for a semiconductor each process: improving robustness through model updating[J]. Proceeding of the ADCHEM 97,Banff,Canada,1997: 78-83.
[9]  Wang Xun,Uwe Kruger,Lennox Barry,et al. Recursive partial least squares algorithms for mointoring complex industial process[J]. Control Engineering Practice,2003,11(6): 613-632.
[10]  Wold S. Exponentially weighted moving principal component analysis and projection to latent stuctures. chemometrics and intelligent laboratory systems[C]. Proceedings of the 3rd Scandinavian Symposium on Chemometrics,Aprial,1994: 149-161.
[11]  Weihua Li,H HenryYue,Sergio Valle_Cervantes,et al. Recursive PCA for adaptive process monitoring[J]. Journal of Process Monitoring,2000,10(5): 471-486.
[12]  Castillo Angela,Zufiria Pedro J. Fault detection schemes for continuous-time stochastic dynamical systems[J]. IEEE Transactions on Automatic Control,2009,54(8): 1820-1836.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133