全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

TiO2纳米粒子对高水分变压器油中电荷输运的影响

, PP. 236-241

Keywords: TiO2纳米粒子,变压器油,高水分,击穿电压,电荷消散特性,脉冲电声法

Full-Text   Cite this paper   Add to My Lib

Abstract:

水分是导致运行中变压器油绝缘性能下降的重要因素之一。为了提高高水分含量下变压器油的绝缘性能,本文利用半导体TiO2纳米粒子对变压器油进行改性研究。测量了不同水分含量下改性前后变压器油的工频击穿和局部放电特性。发现当变压器油中含水量较高时,半导体TiO2纳米粒子不仅可以使变压器油的工频击穿电压提高至改性前的2倍以上,而且可以有效抑制油中局部放电现象。利用电声脉冲(PEA)对变压器油中电荷累积和消散特性进行了测量研究,结果发现TiO2纳米粒子能够提高高水分变压器油中电荷的消散速率,一定程度上抑制了水分对变压器油中电场的畸变,从而提高了变压器油的绝缘性能。

References

[1]  王梦云. 110kV及以上变压器事故统计与分析[J]. 供用电,2005,22(2): 10-14. Wang Mengyun. Faults statistics and analysis for equipments of transformers type in SG system in 2002- 2003[J]. Distribution & Utilization,2005,22(2): 10-14.
[2]  王梦云,薛辰东. 1995-1999年全国变压器类设备事故统计与分析[J]. 电力设备,2001,2(1): 14-22. Wang Mengyun,Xue Chendong. Nation-wide statistics and analysis on power transformers faults in 1995- 1999[J]. Electrical Equipment,2001,2(1): 14-22.
[3]  廖瑞金,桑福敏,刘刚,等. 变压器不同油纸绝缘组合加速老化时油中水分和酸值含量研究[J]. 中国电机工程学报,2010,30(4): 125-131. Liao Ruijin,Sang Fumin,Liu Gang,et al. Study on generation rate of characteristic products of oil-paper insulation aging[J]. Proceedings of the CSEE,2010,30(4): 125-131.
[4]  M Hasheminezhad,E Ildstad,A Nysveen. Electrical breakdown strength of interfaces between solid insula- tion and transformer oil with variable water content [C]. IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2008: 575-578.
[5]  Wang X,Wang Z D. Particle effect on breakdown voltage of mineral and ester based transformer oils[C]. IEEE Annual Report Conference on Electrical Insulation and Dielectric Phenomena,2008: 598-602.
[6]  Fofanali,Wasserbery V,Borsi H,et al. Challenge of mixed insulating liquids for use in high voltage transformers: part 1[J]. IEEE Electrical Insulation Magazine,2002,18(4): 18-31.
[7]  Segal V,Hjortsberg A,Rabinovich A,et al. AC(60Hz) and impulse breakdown strength of a colloidal fluid based on transformer oil and magnetite nanoparticles [C]. IEEE International Symposium on Electrical Insulation Arlington,VA,USA: IEEE,1998: 619-622.
[8]  Kopcansky P,Tomco L,Marton K,et al. The DC dielectric breakdown strength of magnetic fluids based on transformer oil[J]. Journal of Magnetism and Magnetic Materials,2005,289(3): 415-418.
[9]  杜岳凡,吕玉珍,李成榕,等. 半导体纳米粒子改性变压器油的绝缘性能及机制研究[J]. 中国电机工程学报,2012,32(10),177-182. Du Yuefan,Lü Yuzhen,Li Chengrong,et al. Insulating property and mechanism of semiconducting nano- particles modified transformer oils[J]. Proceedings of the CSEE,2012,32(10): 177-182.
[10]  Du Y F,Lv Y Z,Li C R,et al. Effect of electron shallow trap on breakdown performance of transformer oil-based nanofluids[J]. Journal of Applied Physics,2011,110: 104104.
[11]  Du Y F,Lv Y Z,Li C R,et al. Effect of semiconductive nanoparticles on insulating performances of trans- former oil[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2012,19(3): 770-776.
[12]  Du Y F,Lv Y Z,Li C R,et al. Effect of water adsorption at nanoparticle-oil interface on charge transport in high humidity transformer oil-based nanofluid[J]. Colloids and Surfaces A: Physicochemi- cal and Engineering Aspects,2012,415: 153-158.
[13]  Du Y,Zahn M,Lesieutre B C,et al. Moisture equilibrium in transformer paper-oil systems[J]. IEEE Electrical Insulation Magazine,1999,15(1): 11-20.
[14]  Maik K,Stefan T,Tobias S. Diagnostic application of moisture equilibrium for power transformers[J]. IEEE Transactions on Power Delivery,2010,25(4): 2574-2581.
[15]  Liu Q,Wang Z D. AC and lightning breakdown strength of mineral oil nytro gemini X and 10 GBN [C]. International Electrical Insulation Conference. Birmingham. UK: INSUCON,2009: 14-19.
[16]  Martin D,Wang Z D. Statistical analysis of the AC breakdown voltages of ester based transformer oils[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2008,15(4): 1044-1050.
[17]  Abernethyd R B. The new Weibull handbook[M]. 5th ed. Florida: R. B. Abernethy,2006.
[18]  IEC 62539-2007,IEC/IEEE Guide for the Statistical Analysis of Electrical Insulation Breakdown Data[S].
[19]  Nelson J K,Fothergill J C. Internal charge behaviour of nanocomposites[J]. Nanotechnology,2004,15(5): 586-595.
[20]  Chen G,Fu M,Liu X Z,et al. Ac aging and space- charge characteristics in low-density polyethylene polymeric insulation[J]. Journal of Applied Physics,2005,97(8): 083713-083713-7.
[21]  Chiesa M,Das S K. Experimental investigation of the dielectric and cooling performance of colloidal suspen- sions in insulating media[J]. Colloids and Surf-aces A: Physicochemical and Engineering Aspects,2009,335(5): 88-97.
[22]  Alison J M. A high field pulsed electro-acoustic apparatus for space charge and external circuit current measurement within solid insulators[J]. Measurement Science Technology,1998,9(10): 1737.
[23]  Takashi M,Yasuhide N,Tatsuo T. Determination of electric field distribution in oil using the Kerr-effect technique after application of DC voltage[J]. IEEE Transactions on Electrical Insulation,1990,25(3): 475-480.
[24]  Tanaka T. Dielectric nanocomposites with insulating properties[J]. IEEE Transactions on Dielectrics and Electrical Insulation,2005,12(5): 914-928.
[25]  Zhou T C,Chen G,Liao R J,et al. Charge trapping and detrapping in polymeric materials: Trapping parameters[J]. Journal of Applied Physics,2011,110(4): 043724-043724-6.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133