林卫星,文劲宇,艾小猛,等. 风电功率波动特性的概率分布研究[J]. 中国电机工程学报,2012,32(1): 38-46. Lin Weixing,Wen Jinyu,Ai Xiaomeng,et al. Probability density function of wind power variations [J]. Proceedings of the CSEE,2012,32(1): 38-46.
[2]
崔杨,穆钢,刘玉,等. 风电功率波动的时空分布特性[J]. 电网技术,2011,35(2): 110-114. Cui Yang,Mu Gang,Liu Yu,et al. Spatiotemporal distribution characteristic of wind power fluctuation [J]. Power System Technology,2011,35(2): 110-114.
[3]
Sorensen P,Cutululis N A,Vigueras-Rodriguez A. et al. Power fluctuations from large wind farms[J]. IEEE Transactions on Power Systems,2007,22(3): 958-965.
[4]
Mary B,Goran S. Value of bulk energy storage for managing wind power fluctuations[J]. IEEE Transac- tions on Energy Conversion,2007,22(1): 197-205.
[5]
Ernst B,Oakleaf B,Ahlstrom M L,et al. Predicting the wind[J]. IEEE Power & Energy Magazine,2007(11): 79-89.
[6]
范高锋,王伟胜,刘纯,等. 基于人工神经网络的风电功率预测[J],中国电机工程学报,2008,28(34): 118-123. Fan Gaofeng,Wang Weisheng,Liu Cun,et al. Wind power prediction based on artificial neural network[J]. Proceedings of the CSEE,2008,28(34): 118-123.
[7]
杨锡运,孙宝君,张新房,等. 基于相似数据的支持向量机短期风速预测仿真研究[J]. 中国电机工程学报,2012,32(4): 35-41. Yang Xiyun,Sun Baojun,Zhang Xinfang,et al. Short-term wind speed forecasting based on support vector machine with similar Data[J]. Proceedings of the CSEE,2012,32(4): 35-41.
[8]
Zadel L. A. Towards a theory of fuzzy information granulation and its centrality in human reasoning and fuzzy logic[J]. Fuzzy Sets and System,1997,90(2): 111-127.
[9]
张铃,张钹. 模糊商空间理论(模糊粒度计算方法) [J]. 软件学报,2003,14(4): 770-776. Zhang Lin,Zhang Bo. Theory of fuzzy quotient space (methods of fuzzy granular computing)[J]. Journal of Software,2003,14(4): 770-776.
[10]
Bargiela A,Pedrycz W. Granular computing: an introduction[M]. Dodrecht: Kluwer Academic Publi- shers,2003.
[11]
袁铁江,晁勤,李义岩,等. 大规模风电并网电力系统经济调度中风电场出力的短期预测模型[J]. 中国电机工程学报,2010,30(13): 23-27. Yuan Tiejiang,Chao Qin,Li Yiyan,et al. Short-term wind power output forecasting model for economic dispatch of power system incorporating large-scale wind farm[J]. Proceedings of the CSEE,2010,30(13): 23-27.
[12]
Pawlak Z. Granularity of knowledge,indiscernibility and rough sets[C]. Proceedings of IEEE World Congress on Computational Intelligence,Piscataway,NJ,USA: 1998.
[13]
曾鸣,吕春泉,田廓,等. 基于细菌群落趋药性优化的最小二乘支持向量机短期负荷预测方法[J]. 中国电机工程学报,2011,31(34): 93-99. Zeng Ming,Lü Chunquan,Tian Kuo,et al. Least squares-support vector machine load forecasting approach optimized by bacterial colony chemotaxis method[J]. Proceedings of the CSEE,2011,31(34): 93-99.
[14]
尚万峰,赵升吨,申亚京. 遗传优化的最小二乘支持向量机在开关磁阻电机建模中的应用[J]. 中国电机工程学报,2009,29(4): 65-69. Sang Wanfeng,Zhao Shengdun,Shen Yajing. Applica- tion of LSSVM Optimized by genetic algorithm to modeling of switched reluctance motor[J]. Proceedings of the CSEE,2009,29(4): 65-69.
[15]
张春晓,张涛. 基于最小二乘支持向量机和粒子群算法的两相流含油率软测量方法[J]. 中国电机工程学报,2010,30(2): 86-91. Zhang Chunxiao,Zhang Tao. Soft measurement method for oil holdup of two phase flow based on least squares support vector machine and particle swarm optimization[J]. Proceedings of the CSEE,2010,30(2): 86-91.