全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

恢复潮流可行的交直流电力系统切负荷新模型

, PP. 209-215

Keywords: 交直流系统,潮流可行性恢复,有载可调变压器,换流器,预测-校正原对偶内点法

Full-Text   Cite this paper   Add to My Lib

Abstract:

本文通过在交流侧有载调压变压器支路模型中引进虚拟节点,并通过虚拟节点的电压变量来表示有载可调变压器支路功率方程;在直流侧引进与换流器相对应的交流电压幅值、电流幅值等变量表示直流方程;耦合方程把不同坐标系下的方程耦合到一起,由此建立了交直流混合系统恢复潮流可行性问题的二次切负荷优化新模型。预测-校正原对偶内点法被用来实现这个最优潮流问题,该模型的海森矩阵在优化过程中是恒常矩阵,只需要计算一次,这样缩短了内点法的计算总时间。仿真计算结果验证了所建模型正确性和有效性,可判断潮流是否可行并给出切负荷的位置。

References

[1]  余贻鑫, 李鹏. 基于混合法的潮流可行域边界计算[J]. 电力系统自动化, 2004, 28(13): 18-24. Yu Yixin, Li Peng. Computing the boundary of the power flow feasible region based on the hybrid method [J]. Automation of Electric Power Systems, 2004, 28(13): 18-24.
[2]  余贻鑫, 李鹏, 孙强, 等. 电力系统潮流可行域边界拓扑性质及边界算法[J]. 电力系统自动化, 2006, 30(10): 6-11. Yu Yixin, Li Peng, Sun Qiang, et al. Study on topological properties of boundary of power flow feasibility region and algorithm for boundary computa- tion[J]. Automation of Electric Power Systems, 2006, 30(10): 6-11.
[3]  Thomas J Overbye. A power flow measurement for unsolvable cases[J]. IEEE Transactions on Power Systems, 1994, 9(3): 1359-1365.
[4]  傅旭, 王锡凡. 静态安全分析中的联动切负荷算法[J]. 中国电机工程学报, 2006, 26(9): 82-86. Fu Xu, Wang Xifan. New approach to load-shedding in static state security analysis of power systems[J]. Proceedings of the CSEE, 2006, 26(9): 82-86.
[5]  Granville S, Mello J C O, Melo A C G. Application of interior point methods to power flow unsolvability[J]. IEEE Transactions on Power System, 1996, 11(2): 1096- 1103.
[6]  郭力, 张尧, 胡金磊, 等. 恢复潮流可行解的优化控制策略[J]. 电力系统自动化, 2007, 31(16): 24-28. Guo Li, Zhang Yao, Hu Jinlei, et al. An optimal control strategy for recovering feasible solution of the power flow[J]. Automation of Electric Power Systems, 2007, 31(16): 24-28.
[7]  姚煜, 蔡燕春. 离散粒子群与内点法结合的电力系统无功优化[J]. 电力系统保护与控制, 2010, 38(3): 48-52. Yao Yu, Cai Yanchun. A hybrid strategy based on DPSO and IPM for optimal reactive power flow[J]. Power System Protection and Control, 2010, 38(3): 48-52.
[8]  程军照, 李澍森, 程强. 一种无功优化预测校正内点算法[J]. 电工技术学报, 2010, 25(2): 152-157. Cheng Junzhao, Li Shusen, Cheng Qiang. A predictor- corrector interior point method for optimal reactive power[J]. Transactions of China Electrotechnical Society, 2010, 25(2): 152-157.
[9]  熊宁, 张魏, 黄金海, 等. 基于约束松弛变量策略的中心校正内点法[J]. 电力系统保护与控制, 2012, 40(14): 20-25. Xiong Ning, Zhang Wei, Huang Jinhai, et al. Centrality correction interior point method based on constrained slack variables strategy[J]. Power System Protection and Control, 2012, 40(14): 20-25.
[10]  邸弢, 李华强, 范锫. 基于奇异值分解和内点法的交直流系统无功优化[J]. 电工技术学报, 2009, 24(2): 158-163. Di Tao, Li Huaqiang, Fan Pei. Reactive power optimization of AC/DC power system based on singular value decomposition and interior point method[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 158-163.
[11]  Torres G L, Quintana V H. An interior-point method for nonlinear optimal power flow using voltage rectan- gular coordinates[J]. IEEE Transactions on Power System, 1998, 13(4): 1211-1218.
[12]  余娟, 颜伟, 徐国禹, 等. 基于预测-校正原对偶内点法的无功优化新模型[J]. 中国电机工程学报, 2005, 25(11): 146-151. Yu Juan, Yan Wei, Xu Guoyu, et al. A new model of reactive optimization based on predictor corrector primal dual interior point method[J]. Proceedings of the CSEE, 2005, 25(11): 146-151.
[13]  刘沛津, 谷立臣, 韩行. 基于内点法与改进遗传法的无功规划优化混合算法[J]. 电力系统保护与控制, 2008, 36(17): 56-59. Liu Peijin, Gu Lichen, Han Xing. Reactive power planning based on IPM and improved GA hybrid method[J]. Power System Protection and Control, 2008, 36(17): 56-59.
[14]  简金宝, 杨林峰, 全然. 基于改进多中心校正解耦内点法的动态最优潮流并行算法[J]. 电工技术学报, 2012, 27(6): 232-241. Jian Jinbao, Yang Linfeng, Quan Ran. Parallel algorithm of dynamic optimal power flow based on improved multiple centrality corrections decoupling interior point method[J]. Transactions of China Electrotechnical Society, 2012, 27(6): 232-241.
[15]  Granville S. Optimal reactive dispatch through interior point methods[J]. IEEE Transactions on Power System, 1994, 9(1): 136-146.
[16]  Lu C N, Chen S S, Ong C M. The incorporation of HVDC equations in optimal power flow methods using sequential quadratic programming techniques[J]. IEEE Transactions on Power System, 1988, 3(3): 1005-1011.
[17]  李兴源. 高压直流输电系统[M]. 北京: 科学出版社, 2010.
[18]  王锡凡, 方万良, 杜正春. 现代电力系统分析[M]. 北京: 科学出版社, 2007.
[19]  赵畹君. 高压直流输电工程技术[M]. 北京: 中国电力出版社, 2009.
[20]  Yu J, Yan W, Li W Y, et al. Quadratic models of AC-DC power flow and optimal reactive power flow with HVDC and UPFC controls[J]. Electric Power Systems Research, 2008, 78(3): 302-310.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133