全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多位置NWP与主成分分析的风电功率短期预测

, PP. 79-84

Keywords: 风电功率预测,数值天气预报,多位置,主成分分析,聚类分析

Full-Text   Cite this paper   Add to My Lib

Abstract:

数值天气预报(NWP)信息对风电功率短期预测模型的准确性起着重要作用。考虑风电场周围多个位置的NWP信息,提出聚类分析与主成分分析相结合的方法对风力发电功率短期预测进行研究。通过聚类分析提取历史数据中与预测日NWP最相近的样本,然后用主成分分析法对样本日信息进行处理,获得更加准确反映风电场特性的参数。通过对依兰风电场的发电功率进行预测,证实了该方法的有效性,其准确度比基于单位置NWP的预测模型提高了4.65%。

References

[1]  张丽英,叶廷路,辛耀中,等.大规模风电接入电网的相关问题及措施[J].中国电机工程学报,2010,30(25):1-9.
[2]  Zhang Liying,Ye Tinglu,Xin Yaozhong,et al.Problems and measures of power grid accommodating large scale wind power[J].Proceedings of the CSEE,2010,30(25):1-9.
[3]  王贺,胡志坚,张翌晖,等.基于聚类经验模态分解和最小二乘支持相量机的短期风速组合预测[J].电工技术学报,2014,29(4):237-245.
[4]  Wang He,Hu Zhijian,Zhang Yihui,et al.A hybrid model for short-term wind speed forecasting based on ensemble empirical mode decomposition and least squares support vector machines[J].Transactions of China Electrotechnical Society,2014,29(4):237-245.
[5]  Soman S S,Zareipour H,Malik O,et al.A review of wind power and wind speed forecasting methods with different time horizons[C].North American Power Symposium (NAPS),Arlington,TX,2010:1-8.
[6]  何东,刘瑞叶.基于主成分分析的神经网络动态集成风功率超短期预测[J].电力系统保护与控制,2013,41(4):50-54.
[7]  He Dong,Liu Ruiye.Ultra-short-term wind power prediction using ANN ensemble based on the principal components analysis[J].Power System Protection and Control,2013,41(4):50-54.
[8]  周松林,茆美琴,苏建徽.基于主成分分析与人工神经网络的风电功率预测[J].电网技术,2011,35(9):128-132.
[9]  Zhou Songlin,Mao Meiqin,Su Jianhui.Prediction of wind power based on principal component analysis and artificial neural network[J].Power System Technology,2011,35(9):128-132.
[10]  Ernst B,Oakleaf B,Ahlstrom M L,et al.Predicting the wind[J].IEEE Power & Energy Magazine,2007,10(11):79-89.
[11]  Khalid M,Savkin A V.A method for short-term wind power prediction with multiple observation points[J].IEEE Transactions on Power Systems,2012,27(2):579-586.
[12]  Stathopoulos Christos,Kaperoni Akrivi,Galanis George,et al.Wind power prediction based on numerical and statistical models[J].Journal of Wind Engineering and Industrial Aerodynamics,2013,112(1):25-38.
[13]  Lazic Lazar,Pejanovic Goran,Zivkovic Momcilo.Wind forecasts for wind power generation using the Eta model[J].Renewable Energy,2010,35(6):1236-1243.
[14]  Wei Wei,Zhang Yajie,Wu Guilian,et al.Ultra-short-term/short-term wind power continuous prediction based on fuzzy clustering analysis[C].IEEE Innovative Smart Grid Technologies-Asia,2012:1-6.
[15]  Sideratos G,Hatziargyriou N.Using radial basis neural networks to estimate wind power production[C].IEEE Power Engineering Society General Meeting,2007:1-7.
[16]  Q/GDW 588-2011.风电功率预测功能规范[S].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133