全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于类别语言值的电能质量信号模糊分类

, PP. 392-399

Keywords: 电能质量,模糊逻辑,类别语言值,特征选择

Full-Text   Cite this paper   Add to My Lib

Abstract:

模糊逻辑方法已被广泛用于电能质量信号的分类,但在模糊分类系统设计过程中存在过多的不确定因素,增加了设计过程的复杂性,不易得到好的分类结果.针对这一问题,本文提出一种基于类别语言值的电能质量信号模糊分类方法.该方法直接用待分类的各个类别来定义模糊输入变量的语言值,根据各个类别对应的输入变量取值来设定隶属函数.所设计分类系统的模糊规则直接来自于对输入量数值分布的分析,规则数量与类别数量相同.输入模糊变量的语言值和隶属函数的设计,不再只与输入量相关,而且与待分类信号性质,分类结果直接相关.仿真和实测数据的分类识别结果表明了这种模糊分类方法的可行性和有效性.

References

[1]  黄南天, 徐殿国, 刘晓胜. 基于S变换与SVM的电能质量复合扰动识别[J]. 电工技术学报, 2011, 26(10): 23-30. Huang Nantian, Xu Dianguo, Liu Xiaosheng. Identifi- cation of power quality complex disturbances based on S-Transform and SVM[J]. Transactions of China Electrotechnical Society, 2011, 26(10): 23-30.
[2]  李庚银, 王洪磊, 周明. 基于改进小波能熵和支持向量机的短时电能质量扰动识别[J]. 电工技术学报, 2009, 24(04): 161-167. Li Gengyin, Wang Honglei, Zhou Ming. Short-time power quality disturbances identification based on improved wavelet energy entropy and SVM[J]. Transac- tions of China Electrotechnical Society, 2009, 24(04): 161-167.
[3]  秦业, 袁海文, 袁海斌, 等. 基于优化最小二乘支持向量机的电能质量扰动分类[J]. 电工技术学报, 2012, 27(08): 209-214. Qin Ye, Yuan Haiwen, Yuan Haibin, et al. Classifi- cation of power quality disturbances based on optimized least squares support vector machine[J]. Transactions of China Electrotechnical Society, 2012, 27(08): 209- 214.
[4]  王丽霞, 何正友, 赵静. 一种基于线性时频分布和二进制阈值特征矩阵的电能质量分类方法[J]. 电工技术学报, 2011, 26(04): 185-191. Wang Lixia, He Zhengyou, Zhao Jing. Power quality disturbance classification based time-frequency distri- bu-tion and binary threshold on linear feature matrix [J]. Transactions of China Electrotechnical Society, 2011, 26(04): 185-191.
[5]  Dehghani H, Vahidi B, Naghizadeh R A. Power quality disturbance classification using a statistical and wavelet-based hidden Markov model with dem- pster-shafer algorithm[J]. Electrical Power and Energy Systems, 2013, 47: 368-377.
[6]  Abdelsalam A A, Eldesouky, A A, Sallam A A. Classification of power system disturbances using linear Kalman filter and fuzzy-expert system[J]. Inter- national Journal of Electrical Power&Energy Systems. 2012, 43(1): 688-695.
[7]  Rodriguez A, Aguado J A, Martin F. Rule-based classification of power quality disturbances using S-transform[J]. Electric Power Systems Research, 2012, 86: 113-121.
[8]  Kapoor R, Gupta R. Fuzzy lattice based technique for classification of power quality disturbances[J]. European Transactions on Electrical Power, 2012, 22(8): 1053- 1064.
[9]  Samantaray S R. Decision tree-initialised fuzzy rule- based approach for power quality events classifica- tion[J]. IET Generation Transmission & Distribution, 2010, 4(4): 538-551.
[10]  管春, 周雒维, 卢伟国. 基于多标签RBF神经网络的电能质量复合扰动分类方法[J]. 电工技术学报, 2011, 26(08): 198-204. Guan Chun, Zhou Luowei, Lu Weiguo. Recognition of multiple power quality disturbances using multi- label RBF neural networks[J]. Transactions of China Electrotechnical Society, 2011, 26(08): 198-204.
[11]  Mishra S, Bhende C N, Panigrahi B K. Detection and classification of power quality disturbances using s-transform and probabilistic neural network[J]. IEEE Transactions on Power Delivery, 2008, 23(1): 280- 287.
[12]  Yap K S, Lim C P, Au M T. Improved GART neural network model for pattern classification and rule extraction with application to power systems[J]. IEEE Transactions on Neural Networks, 2011, 22(12): 2310 2323.
[13]  Lee C Y, Shen Y X. Optimal feature selection for power quality disturbances classification[J]. IEEE Transactions on Power Delivery, 2011, 26(4): 2342- 2351.
[14]  Meher S K, Pradhan A K. Fuzzy classifiers for power quality events analysis[J]. Electric Power Systems Research, 2010, 80(1): 71-76.
[15]  Zhu T X, Tso S K, Lo K L. Wavelet-based fuzzy reasoning approach to power quality disturbance recognition[J]. IEEE Transactions on Power Delivery, 2004, 19(4): 1928-1935.
[16]  Reaz M B I, Choong F, Sulaiman M S, et al. Expert system for power quality disturbance classifier[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1979-1988.
[17]  Behera H S, Dashb P K, Biswal B. Power quality time series data mining using S-transform and fuzzy expert system[J]. Applied Soft Computing, 2010, 10: 945-955.
[18]  Stockwell R G, Mansinha L, Lowe R P. Localization of the complex spectrum: the S-transform[J]. IEEE Transactions on Signal Processing, 1996, 44(4): 998- 1001.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133