全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于滑模变结构的Vienna整流器新型双闭环控制策略研究

, PP. 143-151

Keywords: Vienna整流器,滑模变结构,双闭环控制,直接功率控制,电压平方

Full-Text   Cite this paper   Add to My Lib

Abstract:

传统电流电压双闭环控制策略的PI调节器控制参数为常数且较为敏感,在系统启动和负载变动时,Vienna整流器存在动态响应速度慢,抗干扰性能差,网侧电流谐波(THD)含量大等问题.为此,提出新型双闭环滑模非线性控制策略来提高输出直流侧电压和输入交流侧电流的动态响应速度以及抗干扰性能,其中内环采用无需dp旋转坐标变换的滑模直接功率控制(SMC-DPC);外环采用电压平方反馈闭环的滑模控制;详细推导该算法,给出具体设计过程.最后利用仿真和实验对新型双闭环滑模非线性控制策略与传统双闭环PI控制方案进行比较,结果表明前者明显优于后者,在启动和负载变化时表现出良好的动态性能和鲁棒性能.

References

[1]  刘晓, 张庆范, 侯典立. 矩阵式整流器的滑模变结构控制[J]. 电工技术学报, 2013, 28(4): 149-156, 164. Liu Xiao, Zhang Qinfan, Hou Dianli. Sliding mode variable structure control of matrix rectifiers[J]. Transactions of China Electrotechnical Society, 2013, 28(4): 149-156, 164.
[2]  郑宏伟, 饶益花, 陈文光. 三相电压型PWM整流器的双滑模控制方案研究[J]. 电源学报, 2014, (01): 96-102. Zheng Hongwei, Rao Yihua, Chean Wenguang. Double sliding mode control for three-phase voltage source PWM rectifier[J]. Journal of Power Supply, 2014, (01): 96-102.
[3]  侯世英, 宋星, 孙韬, 等. 基于滑模控制的新型三相双频并网逆变器[J]. 电力自动化设备, 2011, 31(12): 39-43. Hou Shiying, Song Xing, Sun Tao, et al. Three phase double frequency grid-connected inverter based on sliding mode control[J]. Electric Power Automation Equipment, 2011, 31(12): 39-43.
[4]  J. Hu, H. Nian, B. Hu, Y. He, and Z. Q. Zhu, "Direct active and reactive power regulation of DFIG using sliding-mode control approach, " IEEE Transactions on Energy Conversion, vol. 25, pp. 1028-1039, 2010.
[5]  唐勇奇, 赵葵银, 汪超. 基于滑模变结构控制的三相PWM整流器[J]. 电力自动化设备, 2006, 26(5): 39-41. Tang Yongqi, Zhao Kuiyin, Wang Chao. Three-phase PWM rectifier based on sliding-mode variable structure control[J]. Electric Power Automation Equipment, 2006, 26(5): 39-41.
[6]  Fernando S J. Sliding-mode control of boost-type unity power factor PWM rectifiers[J]. IEEE Transac- tions on Industrial Electronics, 1999, 46(3): 594-603.
[7]  Youssef N B H, Fnaiech F, Al-Haddad K. Small signal modeling and control design of a three-phase AC/DC Vienna converter[C]. Industrial Electronics Society, 2003. IECON '03. The 29th Annual Conference of the IEEE, 2003: 656-661.
[8]  Kanaan H, Al-Haddad K. Small-signal averaged model and simple control of a high-power-factor three-phase/ switch level fixed-frequency PWM rectifier for high- power telecommunications[C]. Telecommunications Energy Conference, 2004. INTELEC 2004. 26th Annual International, 2004: 449-456.
[9]  Bel Haj Youssef N, Al-Haddad K, Kanaan H Y. Large- signal modeling and steady-state analysis of a 1.5kW three-phase/switch/level(vienna) rectifier with experi- mental validation[J]. Industrial Electronics, IEEE Transactions on, 2008, 55(3): 1213-1224.
[10]  宋卫章, 黄骏, 钟彦儒, 王丽娟. 带中点电位平衡控制的Vienna整流器滞环电流控制方法[J]. 电网技术, 2013, 37(07): 1909 -1915. Song Weizhang, Huang Jun, Zhong Yanru, etal. A hysteresis current control method with neutral point potential balancing control for Vienna rectifier[J]. Power System Technology, 2013, 37(07): 1909 -1915.
[11]  Lijun H, Bin L, Ming Z, et al. Equivalence of SVM and Carrier-Based PWM in Three-Phase/Wire/Level Vienna Rectifier and Capability of Unbalanced-Load Control[J]. Industrial Electronics, IEEE Transactions on, 2014, 61(1): 20-28.
[12]  Rixin L, Fei W, Burgos R, et al. Average Modeling and Control Design for VIENNA-Type Rectifiers Considering the DC-Link Voltage Balance[J]. Power Electronics, IEEE Transactions on, 2009, 24(11): 2509-2522.
[13]  Burgos R, Lai R, Pei Y, et al. Space Vector Modulator for Vienna-Type Rectifiers Based on the Equivalence Between Two- and Three-Level Converters: A Carrier-Based Implementation[J]. Ieee Transactions On Power Electronics, 2008, 23(4): 1888-1898.
[14]  何礼高, 陈鑫兵. 变电感参数三电平不可逆PWM整流器的电流PI优化控制[J]. 电工技术学报, 2011, 26(07): 203-209. He Ligao, Chen Xinbing. Optimized PI current controller of three level unidirectional PWM rectifier under variable inductance[J]. Transactions of China Electrotechnical Society, 2011, 26(07): 203-209.
[15]  韦徵, 陈新, 陈杰, 等. 单周期期控制的三相PFC整流器输入电流相位滞后及闭环补偿[J]. 中国电机工程学报, 2013, 33(33): 42-49. Wei Zheng, Chen Xin, Chen Jie, et al. Input current phase lag an closed loop compensation for three- phase PFC rectifier based on one-cycle control strategy [J]. Proceeding of the CSEE, 2013, 33(33): 42-49.
[16]  王智, 方炜, 刘晓东. 数字控制的单周期PFC整流器的设计与分析[J]. 中国电机工程学报, 2014, 34(21): 3423-3431. Wang Zhi, Fang Wei, Liu Xiaodong. Design and analysis of digitally controlled high power factor rectifiers based on one-cycle control[J]. Proceeding of the CSEE, 2014, 34(21): 3423-3431.
[17]  尚磊, 孙丹, 胡家兵, 等. 三相电压型并网逆变器滑模变结构直接功率控[J]. 电力自动化设备, 2010, 34(14): 79-83. Shang Lei, Sun Dan, Hu Jiabing, et al. Sliding mode variable structure based direct power control of three-phase grid-connected voltage source inverters[J]. Electric Power Automation Equipment, 2010, 34(14): 79-83.
[18]  李生民, 何欢欢, 张玉坤, 等. 基于滑模变结构的双馈风力发电机直接功率控制策略研究[J]. 电网技术, 2013, 37(07): 2006-2011. Li Shengming, He Huanhuan, Zhang Yunkun, et al. A sliding mode variable structure-based direct power control strategy for doubly fed induction generator[J]. Power System Technology, 2013, 37(07): 2006-2011.
[19]  Shang L, Hu J. Sliding-mode-based direct power control of grid-connected wind-turbine-driven doubly fed induction generators under unbalanced grid voltage conditions. IEEE Transactions on Energy Conversion, 2012, 27(2): 362-373.
[20]  Huang Jingjing, Zhang Aiming, et al. Improved direct power control for rectifier based on fuzzy sliding mode[J]. Control Systems Technology, IEEE Transac- tions on, 2014, 22(3): 1174-1180.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133