全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种采用负载电流和转速补偿的改进型飞轮储能系统放电控制算法

, PP. 6-17

Keywords: 飞轮储能系统,放电控制算法,负载电流和转速补偿,动态响应速度,参数适应性

Full-Text   Cite this paper   Add to My Lib

Abstract:

主要研究飞轮储能系统放电过程的直流母线电压稳定控制算法。飞轮放电过程中电机反电势随转速持续下降,直流侧负载通常具有电流突变的脉冲负载特性,而且传统PI双闭环控制的直流母线电压外环控制器具有非线性,导致其应对负载电流突变的动态响应慢,对转速变化的适应性差。为解决上述问题,本文提出了一种采用负载电流和转速补偿的飞轮储能系统放电控制算法。该方法将直流侧负载电流和电机转速信号补偿至直流母线电压外环,根据双向能量变换器交直流侧的功率平衡关系,对传统PI控制器的输出进行修正,重新计算q轴有功电流的给定值。此外,针对飞轮储能系统采用的高速电机d、q轴耦合电压大的特点,本文在电流内环也增加了前馈解耦算法,以实现d、q轴电流的独立解耦控制,增强对电流给定信号的跟踪能力。仿真和实验结果与理论分析一致,证明了改进后的放电算法具有更快的动态响应速度和更强的转速适应能力。

References

[1]  Pena Alzola R, et al. Review of flywheel based energy storage systems. IEEE International Conference on in Power Engineering, Energy and Electrical Drives (POWERENG), 2011.
[2]  Dai Xingjian, Deng Zhanfeng, Liu Gang, et al. Review on advanced flywheel energy storage system with large scale[J]. Transactions of China Electrotech- nical Society, 2011(7): 133-140.
[3]  戴兴建等, 大容量先进飞轮储能电源技术发展状况. 电工技术学报, 2011(07): 第133-140页.
[4]  Vazquez S, Lukic S M, Galvan E, et al. Energy storage systems for transport and grid applications[J]. IEEE Transactions on Industrial Electronics, 2010, 57(12): 3881-3895.
[5]  Pena Alzola R, Sebastian R, Quesada J, et al. Review of flywheel based energy storage systems[C]. Procee- dings of the International Conference on Power Engineering, Energy and Electrical Drives, 2011.
[6]  Huynh C, Mcmullen P, Filatov A, et al. Flywheel energy storage system for naval applications[C]. Proceedings of GT ASME Turbo Expo: Power for Land, Sea & Air, Barcelona, Spain, 2006.
[7]  Diaz Gonzalez F, Bianchi F D, Sumper A. Control of a flywheel energy storage system for power smoothing in wind power plants[J]. IEEE Transactions on Energy Conversion, 2014, 29(1): 204-214.
[8]  Chang X, Li Y, Zhang W. Active disturbance rejection control for a flywheel energy storage system[J]. IEEE Transactions on Industrial Electronics, 2014, 1
[9]  Nan WANG, Yongli LI, Weiya ZHANG, et al. A nonlinear control algorithm for flywheel energy storage systems in discharging mode[J]. Proceedings of the CSEE, 2013, 19: 1-7. 王楠等, 飞轮储能系统放电模式下的非线性控制算法. 中国电机工程学报, 2013(19): 1-7.
[10]  Du Yuliang, Trillion Q Zheng, Guo Xizheng, et al. Research on problem of regenerative braking process of flywheel energy storage system[J]. Transactions of China Electrotechnical Society,:
[11]  Arghandeh R M. Pipattanasomporn and S Rahman. Flywheel energy storage systems for ride-through applications in a facility microgrid[J]. IEEE Transac- tions on Smart Grid, 2012, 3(4): 1955-1962.
[12]  Suvire G O, P E Mercado. Combined control of a distribution static synchronous compensator/flywheel energy storage system for wind energy applications[J]. IET on Generation, Transmission & Distribution, 2012, 6(6): 483-492.
[13]  Goncalves De Oliveira J, et al. Study on a doubly-fed flywheel machine-based driveline with an AC/DC/AC converter[J]. IET on Electrical Systems in Trans- portation, 2012, 2(2): 51-57.
[14]  Suvire G O, P E Mercado. Active power control of a flywheel energy storage system for wind energy applications[J]. IET on Renewable Power Generation, 2012, 6(1): 9-16.
[15]  Shen Jianxin, Miao Dongmin. Variable speed permanent magnet synchronous generator systems and control strategies[J]. Transactions of China Electrotechnical Society, 2013, 28(3): 1-8. 沈建新与缪冬敏, 变速永磁同步发电机系统及控制策略. 电工技术学报, 2013(3): 第1-8页.
[16]  Hua Geng, D D X. Stability analysis and improve- ments for variable-speed multipole permanent magnet synchronous generator-based wind energy conversion system[J]. IEEE Transactions on Industrial Electronics Sustainable Energy, 2011,
[17]  Corradini M L, Ippoliti G, Orlando G. Robust control of variable-speed wind turbines based on an aerody- namic torque observer[J]. IEEE Transactions on Control Systems Technology, 2013, 21(4): 1199-1206.
[18]  Mendis N, Muttaqi K M, Sayeef S. Standalone opera- tion of wind turbine-based variable speed generators with maximum power extraction capability[J]. IEEE Transactions on Energy Conversion, 2012, 27(4): 822-834.
[19]  Jinhwan J, Kwanghee N. A dynamic decoupling control scheme for high-speed operation of induction motors [J]. IEEE Transactions on Industrial Electronics, 1999, 46(1): 100-110.
[20]  Jae Do Park, Kalev C, Hofmann F. Control of high- speed solid-rotor synchronous reluctance motor/ generator for flywheel-based uninterruptible power supplies[J]. IEEE Transactions on Industrial Elec- tronics, 2008, 55(8): 3038-3046.
[21]  Antoniewicz P, Jasinski M, Kazmierkowski M P. AC/DC/AC converter with reduced DC side capacitor value[C]. EUROCON 2005: Computer as a Tool, Belgrade, Yugoslavia, 2005.
[22]  Bon Gwan G, Kwanghee N. A DC-link capacitor minimization method through direct capacitor current control[J]. IEEE Transactions on Industry Applications, 2006, 42(2): 573-581.
[23]  Wu R, Dewan S B, Slemon G R. A PWM AC-to-DC converter with fixed switching frequency[J]. IEEE Transactions on Industry Applications, 1990, 26(5): 880-885.
[24]  Krishnan R. Permanent magnet synchronous and brushless DC motor drives[M]. CRC Press Taylor & Francis, 2010.
[25]  Rim C T, Hu D Y, Cho G H. Transformers as equivalent circuits for switches: general proofs and D-Q trans- formation-based analyses[J]. IEEE Transactions on Industry Applications, 1990, 26(4): 777-785.
[26]  Zhou Zhigang. An induction motor decouple control method[J]. Processing of the CSEE, 2003(2): 125- 129.
[27]  周志刚. 一种感应电机的解耦控制方法[J]. 中国电机工程学报. 2003(2): 125-129.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133