全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

包含频率色散效应的细胞膜和核膜跨膜电位的仿真

, PP. 182-188

Keywords: 双层介电模型,Debye模型,频率色散效应,跨膜电位,脉冲电场

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于球形单细胞双层介电模型,引入一阶Debye模型来表征细胞各组分介电参数的频率色散效应,提出了包含频率色散效应的球形单细胞全电路等效模型。定量计算了包含细胞各组分频率色散效应的细胞膜和核膜跨膜电位的幅频特性,结果表明频率色散效应的引入会明显改变频率大于108Hz的脉冲电场作用时细胞膜及核膜的跨膜电位,尤其在频率区间[108Hz,1011Hz]使细胞膜及核膜的跨膜电位增加5dB。选择两组典型的脉冲电场参数,计算其作用时细胞膜及核膜跨膜电位的时域响应,揭示了引入频率色散效应才能精准地预测脉冲作用时细胞的生物电效应。

References

[1]  Schoenbach K H, Hargrave B, Joshi R P, et al. Bioelectric effects of intense nanosecond pulses[J]. IEEE Transactions on Dielectric and Electrical Insulation, 2007, 14(5): 1088-1109.
[2]  Yao C, Guo F, Li C, et al. Gene transfer and drug delivery with electric pulse generators[J]. Current Drug Metabolism, 2013, 14(3): 319-323.
[3]  姚陈果, 龙再全, 孙才新, 等. 生物医用冲激脉冲辐射天线的设计与优化[J]. 电工技术学报, 2011, 26(2): 21-26.
[4]  Yao Chenguo, Long Zaiquan, Sun Caixin, et al. Design and optimization research of impulse radiating focusing antenna used in bioelectric applications[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 21-26.
[5]  Schoenbach K H, Joshi R P, Kolb J F, et al. Ultrashort electrical pulses opens a new gateway into biological cells[J]. Proceedings of the IEEE, 2004, 92(7): 1122-1137.
[6]  Merla C, Paffi A, Apollonio F, et al. Microdosimetry for nanosecond pulsed electric field applications: a parametric study for a single cell[J]. IEEE Transactions on Biomedical Engineering, 2011, 58(5): 1294-1302.
[7]  Schwan H P. Electrical properties of tissue and cell suspensions[J]. Advances in Biological and Medical Physics, 1957, 5: 147-209.
[8]  Tadej K, Damijian M. Second-order model of membrane electric field induced by alternating external electric fields[J]. IEEE Transactions on Biomedical Engineering, 2000, 47(8): 1074-1082.
[9]  Schoenbach K H, Katsuki S, Stark R H, et al. Bioelectrics-new applications for pulsed power technology[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 293-300.
[10]  米彦, 孙才新, 姚陈果, 等. 基于等效电路模型的细胞内外膜跨膜电位频率响应[J]. 电工技术学报, 2007, 22(6): 6-11.
[11]  Mi Yan, Sun Caixin, Yao Chenguo, et al. Frequency response of transmembrane potential on cell inner and outer membrane based on equivalent circuit model[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 6-11.
[12]  米彦, 姚陈果, 李成祥, 等. 基于场-路复合模型的细胞内外膜跨膜电位时频特性[J]. 电工技术学报, 2011, 26(2): 14-20, 33.
[13]  Mi Yan, Yao Chenguo, Li Chengxiang, et al. Time- frequency characteristics of transmembrane potentials on cellular inner and outer membranes based on dielectric-circuit compound model[J]. Transactions of China Electrotechnical Society, 2011, 26(2): 14-20, 33.
[14]  Yao C, Mi Y, Li C, et al. Study of transmembrane potentials on cellular inner and outer membrane- frequency response model and its filter characteristic simulation[J]. IEEE Transactions on Biomedical Engineering, 2008, 55(7): 1792-1799.
[15]  Kotnik T and Miklavcic D. Theoretical evaluation of distributed power dissipation in biological cells exposed to electric fields[J]. Bioelectromagnetics, 2000, 21(5): 385-394.
[16]  Simeonova M and Gimsa J. The influence of the molecular structure of lipid membranes on the electric field distribution and energy absorption[J]. Bioelectro- magnetics, 2006, 27(8): 652-666.
[17]  Merla C, Liberti M, Apollonio F, et al. Quantitative assessment of dielectric parameters for membrane lipid bi-layers from RF permittivity measurements[J]. Bioelectromagnetics, 2009, 30(4): 286-298.
[18]  Merla C, Liberti M, Apollonio F, et al. A 3-D microdosimetric study on blood cells: a permittivity model of cell membrane and stochastic electromagnetic analysis[J]. IEEE Transactions on Microwave Theory and Techniques, 2010, 58(3): 691-698.
[19]  Maxwell J. A treatise on electricity and magnetism [M]. Oxford: Clarendon Press, 1892.
[20]  Pethig R. Dielectric and electronic properties of biological materials[M]. New York: Wiley, 1979.
[21]  Schwan H P. Analysis of dielectric data: Experience gained with biological materials[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 1985, 20(6): 913-922.
[22]  Salimi E. Nanosecond pulse electroporation of biological cells: the effect of membrane dielectric relaxation[D]. Winnipeg: University of Manitoba, 2011.
[23]  Polk C, Postow E. CRC handbook of biological effects of electromagnetic fields[M]. Boca Raton: CRC, 1995.
[24]  Gimsa J, Wachner D. A polarization model overcoming the geometric restrictions of Laplace’s solution for spheroidal cells: obtaining new equations for field-induced forces and transmembrane potential[J]. Biophysical Journal, 1999, 77(3): 1316-1326.
[25]  Wachner D, Simeonova M, Gimsa J. Estimating the subcellular absorption of electric field energy: Equations for an ellipsoidal single shell model[J]. Bioelectrochemistry, 2002, 56(1-2): 211-213.
[26]  Foster K R. Thermal and nonthermal mechanisms of interaction of radio-frequency energy with biological systems[J]. IEEE Transactions on Plasma Science, 2000, 28(1): 15-23.
[27]  Joshi R P, Hu Q, Schoenbach K H, et al. Energy- landscape-model analysis for irreversibility and its pulse-width dependence in cells subjected to a high-intensity ultrashort electric pulse[J]. Physical Review E, 2004, 69(5): 1-10.
[28]  Schoenbach K H, Katsuki S, R. Stark H, et al. Bioelectrics—new applications for pulsed power technology[J]. IEEE Transactions on Plasma Science, 2002, 30(1): 293-300.
[29]  Buescher E S, Schoenbach K H. Effects of submicrosecond, high intensity pulsed electric fields on living cells-intracellular electromanipulation[J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(5): 788-794.
[30]  Joshi R P, Hu Q, Schoenbach K H. Modeling studies of cell response to ultrashort, high-intensity electric fields-implications for intracellular manipulation[J]. IEEE Transactions on Plasma Science, 2004, 32(4): 1677-1686.
[31]  Merla C, Denzi A, Paffi A, et al. Novel passive element circuits for microdosimetry of nanosecond pulsed electric fields[J]. IEEE Transactions on Biomedical Engineering, 2012, 59(8): 2302-2311.
[32]  Hua Y Y, Wang X S, Zhang Y, et al. Intense picosecond pulsed electric fields induce apoptosis through a mitochondrial-mediated pathway in HeLa cells[J]. Molecular Medicine Reports, 2012, 5(4): 981-987.
[33]  Kinosita K J, Tsong T Y. Voltage-induced pore formation and hemolysis of human erythrocytes[J]. Biochimica et Biophysica Acta, 1977, 471(2): 227- 242.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133