Baldick R. The generalized unit commitment problem[J]. IEEE Transactions on Power Systems, 1995, 10(1): 465-475.
[8]
Carlos Edmundo Murillo Sánchez. On the integration of unit commitment and optimal power flow[D]. Ithca: Cornell University, 2000.
[9]
Quyang Z, Shahidehpour S M. A hybrid artificial neural network-dynamic programming approach to unit commitment[J]. IEEE Trans. on Power Systems, 1992, 7(10): 339-350.
[10]
Li C, Johnson R B, Svoboda A J. A new unit commitment method[J]. IEEE Transactions on Power Systems, 1997, 12(1): 113-119.
[11]
Zhuang F, Galiana F D. Unit commitment by simulated annealing[J]. IEEE Transactions on Power Systems, 1990, 5(1): 311-317.
[12]
Cohen G, Zhu D L. Decomposition-coordination methods in large scale optimization problems: the nondifferentiable case and the use of augmented lagrangians[J]. Advance in Large Scale Systems, 1983, 1(1): 203-266.
[13]
Wu Y C, Debs A S, Marsten R E. A direct nonlinear predictor-corrector primal-dual interior point algorithm for optimal power flows[J]. IEEE Trans- actions on Power Systems, 1994, 9(2): 876-883.
[14]
Batut J, Renaud A. Daily generation scheduling optimization with transmission constraints: a new class of algorithms[J]. IEEE Transactions on Power Systems, 1992, 7(3): 982-989.
[15]
Zhang X P, Petoussis S G, Godfrey K R. Nonlinear interior-point optimal power flow method based on a current mismatch formulation[J]. Proc. Inst. Elect. Eng., Gen., Transm., Distrib, 2005, 152(6): 795-805.
[16]
Cohen G. Auxiliary problem principle and decomposition of optimization problems[J]. Journal of Optimization Theory and Applications, 1980, 32(3): 277-305.