Moon F C. Superconducting levitation[M]. New York: John Wiley and Sons, 1994.
[2]
Ma K B, Postrekhin Y V, Chu W K. Superconductor and magnet levitation devices[J]. Rev. Sci. Instrum., 2003, 74(12): 4989-5017.
[3]
Walter H, Bock J, Frohne C, et al. First heavy load bearing for industrial application with shaft loads up to 10 kN[J]. J. Phys. Conf. Ser., 2006, 43:995-998.
[4]
Floegel-Delor U, Rothfeld R, Wippich D, et al. Fabrication of HTS bearings with ton load performance[J]. IEEE Trans. Appl. Supercond., 2007, 17(2): 2142-2145.
[5]
Fang J R, Lin L Z, Yan L G, et al. A new flywheel energy storage system using hybrid superconducting magnetic bearings[J]. IEEE Trans. Appl. Supercond., 2003, 11(1): 1657-1660.
Deng Z, Lin Q, Ma G, et al. A double-superconducting axial bearing system for an energy storage flywheel model[J]. J. Phys. Conf. Ser., 2008, 97: 012283.
[8]
Werfel F N, Floegel-Delor U, Riedel T, et al. Operation and design selection of high temperature superconducting magnetic bearings[J]. Supercond. Sci. Technol., 2004, 17(10): 1192-1195.
[9]
Demachi K, Masaie I, Ichihara T, et al. Rotation speed degradation of superconducting magnetic bearing made of unsymmetrical shaped YBCO bulks[J]. Physica C, 2005, 426-431(Part 1): 826-833.
[10]
Koshizuka N. R&D of superconducting bearing technologies for flywheel energy storage systems[J]. Physica C, 2006, 445-448: 1103-1108.
[11]
Hikihara T, Adachi H, Moon F C, et al. Dynamical behavior of flywheel rotor suspended by hysteretic force of HTSC magnetic bearing[J]. Journal of Sound and Vibration, 1999, 228(4): 871-887.
[12]
Strasik M, Johnson P E, Day A C, et al. Design, fabrication, and test of a 5-kWh/100-kW flywheel energy storage utilizing a high-temperature superconducting bearing[J]. IEEE Trans. Appl. Supercond., 2007, 17(2): 2133-2137.
[13]
Zhang Y, Postrekhin Y, Ma K B, et al. Reaction wheel with HTS bearings for mini-satellite attitude control[J]. Supercond. Sci. Technol., 2002, 15(5): 823-825.
Koshizuka N, Ishikawa F, Nasu H, et al. Present status of R&D on superconducting magnetic bearing technologies for flywheel energy storage system[J]. Physica C, 2002, 378-381(Part 1): 11-17.
[16]
Wang J S, Wang S Y, Zeng Y W, et al. The first man-loading high temperature superconducting Maglev test vehicle in the world[J]. Physica C, 2002, 378-381(Part 1): 809-814.
[17]
Day A C, Strasik M, et al. Design and testing of the HTS bearing for a 10 kWh flywheel system[J]. Supercond. Sci. Technol., 2002, 15(5): 838-841.
[18]
Han Y H, Jung S Y, Lee J P, et al. Characteristics of a superconductor journal bearing substator for a 100 kWh SFES[C]. 8th European Conference on Applied Superconductivity, Brussels, Belgium, 2007: 16-20.
Luo Y, Takagi T, Miya K. Reduction of levitation decay in high Tc superconducting magnetic bearings[J]. Cryogenics, 1999, 39(4): 331-338.
[22]
Moon F C, Yanoviak M M, Ware R. Hysteretic levitation forces in superconducting ceramics[J]. Appl. Phys. Lett., 1988, 52(18): 1534-1536.
[23]
Werfel F N, Floegel-Delor U, Riedel T, et al. A compact HTS 5 kWh/250 kW flywheel energy storage system[J]. IEEE Trans. Appl. Supercond., 2007, 17(2): 2138-2141.
[24]
Werfel F N, Floegel-Delor U, Riedel T, et al. 250 kW flywheel with HTS magnetic bearing for industrial use[J]. J. Phys. Conf. Ser., 2008, 97: 012206.
[25]
Shu Q S, Cheng G F, Susta J, et al. A six-meter long prototype of the mag-lev cryogen transfer line[J]. IEEE Trans. Appl. Supercond., 2005, 15(2): 2297-2300.
[26]
Siems S O, Canders W R, Walter H, et al. Superconducting magnetic bearings for a 2MW/10kWh class energy storage flywheel system[J]. Supercond. Sci. Technol., 2004, 17(5): S229-S233.