Joint US-Canada Power System Outage Task Force. Final Report on the August 14th Blackout in the United States and Canada. US DOE[OL]. Available: http:// reports. energy. gov/, April 5, 2004.
[2]
Lu W, Rajapakse J C. Unique ICA solution by eliminating indeterminacy[C]. Proc. of the Int. Joint Conf. Neural Networks, Washington D. C., 2001, 7: 388-393.
[3]
Comon P. Independent component analysis-a new concept? [J]. Signal Processing, 1994, 36: 287-314.
[4]
Hyvarinen A. Independent component analysis for time-dependent stochastic processes[C]. Proc. of the Int. Conf. Artificial Neural Networks, Skovde Sweden, 1998: 135-140.
[5]
Yang Jian, Gao Xiumei, Zhang David, et al. Kernel ICA:an alternative formulation and its application to face recognition [J]. Pattern Recognition, 2005, 38: 1784-1787.
[6]
SchÄolkopf B, Smola A J. Learning with Kernels[M]. MA: MIT Press, 2001.
[7]
New York ISO: Real Time Actual Load Data, From OASIS of NYISO. [OL]. Available: http://www. nyiso. com.
[8]
Zimmerman Ray D, Murillo-Sánchez Carlos E, Gan Deqiang. A MATLAB Power System Simulation Package[OL]. Available: http://www. pserc. cornell. edu/matpower.
[9]
Alsac O, Vempati N, Stott B, et al. Generalized state estimation[J]. IEEE Trans. on Power Syst., 1998, 13(8): 1069-1075.
Ghosh A K, Lubkeman D L, Jones R H.Load modeling for distribution circuit state estimation[J]. IEEE Trans. on Power Delivery, 1997, 12(2): 999-1005.
[12]
Liao Huaiwei, Niebur Dagmar. Load profile estimation in electric transmission networks using independent component analysis[J]. IEEE Transactions on Power Systems, 2003, 18(2): 707-715.
[13]
Niebur D, Rotolo A, Mazzoleni F. Load profile separation using independent component analysis[C]. Proc. Int. Con. Intell. Syst. Applicat. Power Syst., Budapest, Hungary, 2001.
[14]
Hyvarinen A, Karhunen J, Oja E. 独立成分分析[M]. 周宗潭, 董国华, 徐昕, 等译. 北京:电子工业出版社, 2007.
[15]
Hyvärinen A. Fast and robust fixed-point algorithms for independent component analysis[J]. IEEE Trans. on Neural Networks, 1999, 10(3): 626-634.
[16]
Mika S, SchKolkopf B, Smola A, et al. Kernel PCA and de-noising in feature spaces[M]. MA: MIT Press, 1999.
[17]
Akaho S. A Kernel method for canonical correlation analysis[M]. Proceedings of the International Meeting of the Psychometric Society (IMPS2001). Tokyo: Springer-Verlag, 2001.
[18]
Harmeling S, Ziehe A, Kawanabe M, et al. Kernel feature spaces and nonlin-ear blind source separation [M]. MA: MIT Press, 2002.