全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

高压直流换流阀器件高频建模

, PP. 142-148

Keywords: 换流阀,矢量匹配,阻抗综合,高频模型

Full-Text   Cite this paper   Add to My Lib

Abstract:

高压直流(HVDC)换流站电磁干扰主要由阀体内的晶闸管在周期性的导通和关断过程中产生,该干扰中的高频分量通过辐射和传导两种形式会对换流站内的通信设备、计算机和载波系统操作等产生影响。所以,建立换流阀高频电路模型对该干扰进行预测,研究其时频特性是进行干扰机理分析的前提条件。本文对HVDC阀体内的晶闸管、阻容吸收电路和饱和电抗器的阻抗频率特性进行了测量(频率范围100kHz~50MHz),在此基础上,通过矢量匹配方法对测量所得的离散点进行有理函数逼近,基于阻抗综合理论建立了阀体主要器件的高频等效电路。该电路能够直接应用于EMTP和PSCAD进行仿真,可为换流站内其他设备的抗干扰度以及阀厅屏蔽设计提供可靠依据。仿真结果和测量结果的比较,验证了本文建模方法的正确性。

References

[1]  Annestrand S A. Radio interference from HVDC converter stations[J]. IEEE Trans. on Power Apparatus and Systems, 1972, PAS-91(3): 874-882.
[2]  Ross C, Robert V D, Kasten D G, et al. HVDC converter station tests in the 0.1 to 5 MHz frequency range[J]. IEEE Trans. on Power Delivery, 1988, 3(3): 971-977.
[3]  Jakel B W, Quoc Bu T. Electromagnetic environment near HVDC thyristor valves[C]. Proceedings of Eleventh International Symposium on High Voltage Engineering, London, 1999: 47-50.
[4]  Murata Y, Tanabe S, Ukawa Y, et al. 3D-MoM analysis of radio frequency noise radiation from HVDC converter station[C]. IEEE International Symposium on Electromagnetic Compatibility, Seattle, 1999: 980-985.
[5]  Gustavsen B, Semlyen A. Rational approximation of frequency domain responses by vector fitting[J]. IEEE Trans. on Power Delivery, 1999, 14 (3): 1052-1061.
[6]  Gustavsen B. Improving the pole relocating properties of vector fitting[J]. IEEE Trans. on Power Delivery, 2006, 21(3): 1587-1592.
[7]  吴茂林, 崔翔.电压互感器宽频特性的建模[J]. 中国电机工程学报, 2003, 23(10): 1-5.
[8]  梁贵书, 张喜乐, 王晓晖, 等. 特快速暂态过电压下变压器绕组高频电路模型的研究[J]. 中国电机工程学报, 2006, 26(4): 144-148.
[9]  Giulio Antonini. SPICE equivalent circuit of frequency-domain responses[J]. IEEE Trans. on EMC, 2003, 45(3): 502-512.
[10]  Juhlin L E, Larsson T, Skansen J, et al. Considerations regarding RI limits for high voltage HVDC or facts stations[C]. CIGRE 2006, Paris, 2006.
[11]  马为民, 聂定珍, 万保全, 等. 高压直流换流站换流阀电磁干扰的测量[J]. 高电压技术, 2008, 34(7):1317-1323.
[12]  Sarma M P, Gilsig T. A method of calculating the RI from HVDC converter stations[J]. IEEE Trans. on Power Apparatus and Systems, 1973, PAS-92(3): 1009-1018.
[13]  Tatro P J, Adamson K A, Eltzmann M A, et al. Power line carrier interference from HVDC converter terminals[J]. IEEE Trans. on Power Delivery, 1993, 8 (3): 827-840.
[14]  Stephen A S, Robert V Devore, Ross Caldecott, et al. Design and RF operation of scale model of dickson ±400kV HVDC converter station[J]. IEEE Trans. on Power Apparatus and Systems, 1985, PAS-104(7): 1930-1936.
[15]  Robert V D, Kimball D F, Kasten D G, et al. RF analysis of a 12-pulse HVDC converter[J]. IEE Proceedings of Generation, Transmission and Distribution, 1988, 135(3): 210-218.
[16]  Ross Caldecott, Liu Yilu, Stephen A S, et al. Measurement of the frequency dependent impedance of major station equipment[J]. IEEE Trans. on Power Delivery, 1990, 5(1): 474-480.
[17]  Liu Y, Sebo S A, Wright S E. Modeling of converter transformer using frequency domain terminal impedance measurements[J]. IEEE Trans. on Power Delivery, 1993, 8 (1): 66-72.
[18]  Maruvada P S, Malewski R, Wong P S. Measurement of the electromagnetic enviroment of HVDC converter stations[J]. IEEE Trans. on Power Delivery, 1989, 4(2): 1129-1136.
[19]  Dallaire R D, Maruvada P S. Evaluation of the effectiveness of shielding and filtering of HVDC converter stations[J]. IEEE Trans. on Power Delivery, 1989, 4(2): 1469-1475.
[20]  Gustavsen B, Semlyen A. Enforcing passivity for admittance matrices approximated by rational functions[J]. IEEE Trans. on Power Delivery, 2001, 16 (1): 97-104.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133