全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于正则形理论的非线性稳定因子

, PP. 134-138

Keywords: 电力系统稳定,非线性稳定因子,正则形二阶变换,低频振荡模式,时域仿真

Full-Text   Cite this paper   Add to My Lib

Abstract:

在正则形二阶变换基础上,通过研究变换过程中省略的交叉项和省略的三阶项,提出了分析大扰动下电力系统稳定的非线性稳定因子的新概念,即阻尼因子和稳定域因子的新概念。通过阻尼因子可分析大扰动下正则形变量幅值发生变化的快慢,在此基础上再通过稳定域因子的计算得到大扰动下正则形变量稳定的区域,进而判断系统稳定情况。这些稳定信息是无法从以往的分析理论和方法中得到的,这从另一侧面为系统的稳定分析提供了一条可行途径。电力系统算例仿真结果证明了本文所提出非线性稳定因子这一新概念的正确性和在电力系统中应用的有效性。

References

[1]  Dobson I, Barocio E. Scaling of normal form analysis coefficients under coordinate change[J]. IEEE Trans. on Power Syst., 2004, 19(3): 1438-1444.
[2]  Starrett S K, Fouad A A. Nonlinear measures of mode-machine participation[J]. IEEE Trans. on Power Syst., 1998, 13(2): 389-394.
[3]  Betancourt R J, Barocio E, Arroyo J, et al. A real normal form approach to the study of resonant power systems[J]. IEEE Trans. on Power Syst., 2006, 21(1): 431-432.
[4]  Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields[M]. New York: Springer-Verlag, 1990.
[5]  Kumano T. Nonlinear stability indexes of power swing oscillation using normal form analysis[J]. IEEE Trans. on Power Syst. , 2006, 20(2): 1439-1448.
[6]  Zhu S Z, Vitta V, Kliemann W. Analyzing dynamic performance of power systems over parameter space using normal forms of vector fields part I: Identification of vulnerable regions[J]. IEEE Trans. on Power Systems, 2001, 16(4): 444-450.
[7]  Saha S, Fouad A A, Kliemann W. Stability boundary approximation of a power system using the real normal form of vector fields[J]. IEEE Trans. on Power Syst., 2005, 12: 797-802.
[8]  李伟固. 正则形理论及其应用[M]. 北京: 科学出版社, 2000.
[9]  邓集祥, 陈武晖, 纪静. 基于正则形理论的电力系统2阶模态谐振的研究[J]. 中国电机工程学报, 2006, 26(24): 5-11.
[10]  Jang G, Vittal V, Kliemann W. Effect of nonlinear modal interaction on control performance use of normal forms technique in control design. Part Ⅰ: General theory and procedure[J]. IEEE Trans. on Power Syst., 1998, 13(2): 401-407.
[11]  Sanchez Gasca J J, Vittal V, Gibbard M J, et al. Committee report-task force on assessing the need to
[12]  include higher order terms for small-signal (modal) analysis[J]. IEEE Trans. on Power Syst. , 2005, 20(4): 1886-1904.
[13]  邓集祥, 赵丽丽. 主导低频振荡模式二阶非线性相关作用的研究[J]. 中国电机工程学报, 2005, 25(7): 15-21.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133