Dobson I, Barocio E. Scaling of normal form analysis coefficients under coordinate change[J]. IEEE Trans. on Power Syst., 2004, 19(3): 1438-1444.
[2]
Starrett S K, Fouad A A. Nonlinear measures of mode-machine participation[J]. IEEE Trans. on Power Syst., 1998, 13(2): 389-394.
[3]
Betancourt R J, Barocio E, Arroyo J, et al. A real normal form approach to the study of resonant power systems[J]. IEEE Trans. on Power Syst., 2006, 21(1): 431-432.
[4]
Guckenheimer J, Holmes P. Nonlinear oscillations, dynamical systems and bifurcations of vector fields[M]. New York: Springer-Verlag, 1990.
[5]
Kumano T. Nonlinear stability indexes of power swing oscillation using normal form analysis[J]. IEEE Trans. on Power Syst. , 2006, 20(2): 1439-1448.
[6]
Zhu S Z, Vitta V, Kliemann W. Analyzing dynamic performance of power systems over parameter space using normal forms of vector fields part I: Identification of vulnerable regions[J]. IEEE Trans. on Power Systems, 2001, 16(4): 444-450.
[7]
Saha S, Fouad A A, Kliemann W. Stability boundary approximation of a power system using the real normal form of vector fields[J]. IEEE Trans. on Power Syst., 2005, 12: 797-802.
Jang G, Vittal V, Kliemann W. Effect of nonlinear modal interaction on control performance use of normal forms technique in control design. Part Ⅰ: General theory and procedure[J]. IEEE Trans. on Power Syst., 1998, 13(2): 401-407.
[11]
Sanchez Gasca J J, Vittal V, Gibbard M J, et al. Committee report-task force on assessing the need to
[12]
include higher order terms for small-signal (modal) analysis[J]. IEEE Trans. on Power Syst. , 2005, 20(4): 1886-1904.