Green A J, Christopoulos J. Plasma buildup and breakdown delay in a triggered vacuum gap[J]. IEEE Trans. Plasma Sci., 1979, PS-7(2): 111-115.
[2]
Shang W, Damstra G C. The main gap discharge type and mechanism of a triggered vacuum gap[C]. Proc. 17th ISDEIV, 1996: 51-55.
[3]
Lafferty J M. Triggered vacuum gaps[J]. Proc. IEEE, 1966, 54(1): 23-32.
[4]
Alferov D F, Sidorov V A. Modernized triggered vacuum discharge switch with a six-gap Electrode System[J]. Instruments and Experimental Techniques, 1996, 39(3): 390-395.
[5]
Alferov D F, Ivanov V P, Sidorov V A. High-current vacuum switching devices for power energy storages [J]. IEEE Transaction on Magnetics, 1999, 35(1): 323-327.
[6]
Zhou Z, Duan X, Liao M, et al. Operational Characteristics of a field-breakdown triggered vacuum switch[J]. IEEE Trans. Magn., 2009, 45(1): 564-567.
[7]
Zhengyang Z, Xiongying D, Minfu L, et al. Plasma stability in a triggered vacuum switch[J]. IEEE Transaction on Plasma Science, 2009, 37(4): 555-559.
[8]
Farrall G A. Low voltage firing characteristics of a triggered vacuum gap[J]. IEEE Trans. Electron Devices, 1966, ED-13(4): 432-438.
[9]
Rich J A, Farrall G A, Imam I, et al. Development of a high-power vacuum interrupter[S]. General Electric Company, Schenectady, NY, EPRIEL-1895, 1981.
[10]
Warren T, Dickens J, Neuber A, et al. Development of improved triggered vacuum switches [C]. Proceeding of Pulsed Power Conference, 1999, 2: 1264-1267.