全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

智能循环电流融冰方法及其临界融冰电流研究

, PP. 26-34

Keywords: 智能循环电流融冰方法,雨凇覆冰,临界融冰电流,影响因素

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了对分裂导线子导线进行分组并将输电线路总负荷电流循环通流至各子导线组以实现输电线路融冰的智能循环电流融冰方法。通过对雨凇覆冰过程中临界融冰时导线及其表面冰层的热平衡分析,建立了智能循环电流融冰方法的临界融冰电流计算模型,在人工气候室进行了实验验证,建立了有限元仿真模型,三者的结果吻合,分析了临界融冰电流的影响因素,计算了近年来严重覆冰灾害气象条件下的临界融冰电流并与经济电流密度对应的电流进行比较。结果表明在同等条件下,智能循环电流融冰方法所需的临界融冰电流小于直流短路融冰的临界电流;临界融冰电流与覆冰厚度、环境温度和风速有关,在环境参数一定时覆冰厚度对临界融冰电流的影响趋势不明显;同一覆冰厚度下,环境温度越低临界融冰电流越大,风速越大临界融冰电流越大,且随着环境温度的降低和风速的增大临界融冰电流增长趋于缓慢;输电线路经济电流密度对应的电流高于严重覆冰灾害气象条件下的临界融冰电流并有足够的裕度,因此智能循环电流融冰方法在融冰电流的选择上是可行的。

References

[1]  Xu Shukai, Zhao Jie. Summarize the ice disaster accidents and its anti-icing technology in power system[J]. Southward Power System Technology, 2008, 2(2): 1-2.
[2]  Jiang Xingliang, Fan Songhai, Zhang Zhijin. Simulation and experimental investigation of DC Ice-Melting process on an iced conductor[J]. IEEE Transactions on Power Delivery, 2010, 25(02): 919-929.
[3]  Fan Songhai, Jiang Xingliang, Sun Caixin, Temperature characteristic of DC ice-melting conductor[J]. Cold Regions Science and Technology, 2011, 65(1): 29-38.
[4]  Makkonen L. Modeling of ice accretion on wires[J]. Journal of Climate and Applied Meteorology 1984, 23(6): 929-939.
[5]  Wang Hui, Liang Xinlan. Research on selecting conductor cross section based on economical current density[J]. Science Technology and Engineering, 2010, 10(25): 6279-6281
[6]  郭恒, 马俊. 中国电网大规模冰灾事故调查及分析[J], 重庆电力高等专科学校学报, 2010, 15(4): 28-31.
[7]  Guo Heng, Ma Jun. A survey and analysis on the large-scale power grid ice disasters in China[J]. Journal of Chongqing Electric Power College. 2010, 15(4): 28-31.
[8]  王少华, 蒋兴良, 孙才新. 覆冰导线舞动特性及其引起的导线动态张力[J]. 电工技术学报, 2010, 25(1): 159-166.
[9]  Wang Shaohua, Jiang Xingliang, Sun Caixin. Characteristics of icing conductor galloping and induced dynamic tensile force of the conductor[J]. Transactions of China Electrotechnical Society, 2010, 25(1): 159-166.
[10]  Jiao Chongqing, Qi Lei, Cui Xiang, et al. Power line de-icing using medium frequency power source[J]. Transactions of China Electrotechnical Society, 2010, 25(7): 159-164.
[11]  张志劲, 蒋兴良, 胡建林, 等. 间插布置方式对交流绝缘子串覆冰特性影响[J]. 电工技术学报, 2011, 26(1): 170-176.
[12]  蒋兴良, 张丽华. 输电线路除冰防冰技术综述[J]. 高电压技术, 1997, 23(1): 73-76.
[13]  Jiang Xingliang, Zhang Lihua. De-icing and anti-icing of transmission lines[J]. High Voltage Engineering, 1997, 23(1): 73-76.
[14]  胡毅. 电网大面积冰灾分析及对策探讨[J]. 高电压技术, 2008, 34(02): 215-219.
[15]  Hu Yi. Analysis and countermeasures discussion for large area icing accident on power grid[J]. High Voltage Engineering, 2008, 34(02): 215-219.
[16]  Farzaneh M, Savadjiev K. Statistical analysis of field data for precipitation icing accretion on overhead power lines[J]. IEEE Transactions on Power Delivery, 2005, 20(21): 1080-1087.
[17]  Sadov Yu S, Shivakumar P N, Mathematical D. Model of ice melting on transmission lines[J]. J Math Model Algor, 2007, 6(1): 273-286.
[18]  顾明, 马文勇, 全涌, 等. 两种典型覆冰导线气动力特性及稳定性分析[J]. 同济大学学报(自然科学版), 2009, 37(10): 1328-1332.
[19]  Gu Ming, Ma Wenyong, Quan Yong, et al. Aerodynamic force characteristics and stabilities of two typical iced conductors [J]. Journal of Tongji University(Natural Science), 2009, 37(10): 1328- 1332.
[20]  Qi Mingjun, Li Xiquan. The review and reconsider of icing disaster & countermeasure in hunan electric grid [J]. Central China Electric Power, 2008, 10(02): 25-28.
[21]  陆佳政, 蒋正龙, 张红先, 等. 湖南电网2008年冰灾技术分析.[J]. 湖南电力, 2008, 3(03): 1-9.
[22]  Lu Jiazheng, Jiang Zhenglong, Zhang Hongxian, et al. Technical analysis of hunan power grid ice disaster in 2008. [J]. Hunan Electric Power, 2008, 3(03): 1-9.
[23]  Poots G, Skelton P L I. The effect of aerodynamic torque on the rotation of an overhead line conductor during snow accretion[J]. Atmospheric Research, 1995, 36(3-4): 251-260.
[24]  许树楷, 赵杰. 电网冰灾案例及抗冰融冰技术综述[J]. 南方电网技术, 2008, 2(2): 1-2.
[25]  焦重庆, 齐磊, 崔翔, 等. 输电线路外施中频电源融冰技术[J]. 电工技术学报, 2010, 25(7): 159-164.
[26]  Zhang Zhijin, Jiang Xingliang, Hu Jianlin, et al. Influence of the type of insulators connected with alternately large and small diameter sheds on AC icing flashover performance[J]. Transactions of China Electrotechnical Society, 2011, 26(1): 170-176.
[27]  Farzaneh M. Atmospheric icing of power Networks [M]. New York: Springer, 2008.
[28]  Alexiades V, Solomon A D. Mathematical modeling of melting and freezing processes[M]. New York: Hemisphere Public Corporation, 1993.
[29]  蒋兴良, 易辉. 输电线路覆冰及防护[M]. 北京: 中国电力出版社, 2001.
[30]  Huneault M, Langheit C, Caron J. Combined models for glaze ice accretion and de-icing of current- carrying electrical conductors[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1611-1616.
[31]  Personne P, Gayet J F. Ice accretion on wires and anti-icing induced by the Joule effect [J]. Journal of Applied Meteorology, 1988, 27(2): 101-114.
[32]  漆铭钧, 李西泉. 湖南电网冰冻灾害及其应对措施的回顾与思考[J]. 华中电力, 2008, 10(02): 25-28, 2001.
[33]  梁文政. 架空电力线路抗冰(雪)害的设计与对策[J]. 电力设备, 2008, 9(12): 19-22.
[34]  Liang Wenzheng. Countermeasures and design of overhead power lines anti-ice (snow)[J]. Electric Power Equipment, 2008, 9(12): 19-22.
[35]  蒋兴良, 范松海, 胡建林, 等. 输电线路直流短路融冰的临界电流分析[J]. 中国电机工程学报, 2010, 30(1): 111-116.
[36]  Jiang Xingliang, Fan Songhai, Hu Jianlin, et al. Analysis of critical ice-melting current for short circuit DC transmission line[J]. Proceeding of the CSEE, 2010, 30(1): 111-116.
[37]  Imai I. Studies of ice accretion[J]. Research Snow Ice, 1953, 1(1): 35-44.
[38]  王晖, 梁新兰. 根据经济电流密度选择导线截面的研究[J]. 科学技术与工程, 2010, 10(25): 6279-6281.
[39]  蒋兴良, 王大兴, 范松海, 等. 直流融冰过程中覆冰导线表面最高温度试验研究[J]. 高电压技术, 2009, 35(11): 2796-2799.
[40]  Jiang Xingliang, Wang Daxing, Fan Songhai, et al. Experimental research on maximum temperature of ice-covered conductors during DC ice-melting[J]. High Voltage Engineering, 2009, 35(11): 2796-2799.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133