全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

涡旋膨胀机发电系统效率优化控制策略

, PP. 25-31

Keywords: 废气能量回收,涡旋膨胀机,最小压缩气体消耗,效率优化,反馈线性化

Full-Text   Cite this paper   Add to My Lib

Abstract:

提出了以最小压缩气体消耗为涡旋膨胀机发电系统效率优化的目标,采用了基于系统损耗模型优化和在线搜索相结合的转速寻优策略,有效避免寻优初值的随机性及参数变化对优化结果的影响。针对气动系统非线性、滞后性及负载不确定性所致的发电系统强非线性的特点,采用了供气压力反馈线性化的补偿控制和PI速度控制相结合的控制策略,对优化速度快速无静差跟踪。试验结果表明,控制策略可实现速度的快速寻优以及优化速度的快速跟踪,实现了减小压缩气体消耗的目标。

References

[1]  The Energy Resources Center of the Illinois Industryof the Future. available at: http: //www.erc. uic.edu/iof/c-omp air.html, viewed 20th February 2010.
[2]  Belforte G. New developments and new trends in pneumatics[C]. The 6th International Symposium on Flow Control, Measurements and Flow Visualization, 2000: .
[3]  Denise CRE, AMB, Jorge AST. An overview on the current processes for recycling of batteries[J]. Journal of Power Sources, 2004, 135(2): 311-319.
[4]  Lemofouet S, Rufer A. A hybrid energy storage system based on compressed air and supercapacitors with maximum efficiency point tracking[J]. IEEE Transactions on Industrial Electronics, 2006, 53(4): 1105-1115.
[5]  Yanagisawa T, Fukuta Y, Ogi T, et al. Performance of an oil-free scroll-type air expander[C]. International Conference on Compressors and Their Systems, 2001: 167-174.
[6]  Gao Xiaojun, Li Liansheng, Zhao Yuanyang, et al. Research on a scroll expander used for recovering work in a fuel cell[J]. International Journal of Thermodynamics, 2004, 7(1): 1-8.
[7]  Yang L, Wang J, Mangan S. Mathematical model and energy efficiency analysis of a scroll-type air motor[J]. International Journal of Applied Mathematics, 2008, 38(1), 14-19.
[8]  Zhao Yuanyang, Li Liansheng, Shu Pengcheng. Thermodynamic simulation of scroll compressor expander module in automotive fuel cell engine[J]. Journal of Automobile Engineering, 2006, 220(5): 571-577.
[9]  Sébastien Declaye. Design, optimization and modeling of an organic Rankine cycle for waste heat recovery[D]. Belgium: University of Liege, 2009.
[10]  Navneet Gulati, Eric J Barth. Non-linear pressure observer design for pneumatic actuators[C]. Proceedings of the IEEE/ASME International Conference on Advanced Intelligent Mechatronics Monterey, 2005: 24-28.
[11]  Smaoui M, Brun X, Thomasset D A. Combined first and second order sliding mode approach for position and pressure control of an electro pneumatic system[C]. American Control Conference, 2005: 8-10.
[12]  Kimura T, Hara S, Fujta. Feedback linearization control applied to pneumatic actuator system with static friction[J]. Control Engineering Practice, 1997, 5(10): 1385-1394.
[13]  Takemura F, Pandian S R. Control of a hybrid pneumatic/electric motor[C]. Proceedings of the IEEE International Conference on Intelligent Robots and Systems, 2000: 209-214.
[14]  Wang J, Moore P R. Robust servo motion control of air motor systems[C]. Proceedings of the United Kingdom Automatic Control Council International Conference on Control, 1996: 90-95.
[15]  Marumo R, Tokhi M O. Neural-model reference control of an air motor[C]. Proceedings of the IEEE AFRICON: 7th AFRICON Conference in Africa: Technology Innovation, 2004: 467-472.
[16]  Lemort V, Quoilin S. Designing scroll expanders for use in heat recovery Rankine cycles[C]. Proceedings of the International Conference on Compressor and their Systems, 2009: 3-12.
[17]  褚晓广, 张承慧, 李珂, 等. 基于涡旋机的新型压缩空气储能系统动态建模与效率分析[J]. 电工技术学报, 2011, 26(7): 126-134.
[18]  Chu Xiaoguang, Zhang Chenghui, Li Ke, et al. Dynamic modeling and efficiency analysis of compressed air energy storage system equipped with scroll compressor[J]. Transactions of China Electrotechnical Society, 2011, 26(7): 126-134.
[19]  Amei K Takayasu. A maximum power control of wind generator system using a permanent magnet synchronous generator and a boost chopper circuit[C]. Proceedings of the Power Conversion Conference, 2002: 1447-1452.
[20]  Daniel S K, Donald W N. On-line efficiency optimization of a variable frequency induction motor drive[J]. IEEE Transactions on Industry Applications, 1985, 21(4): 610-617.
[21]  Arsie I V M, et al. A model of a hybrid power plant with wind turbines and compressed air energy storage[C]. Proceedings of American Society of Mechanical Engineers Power Conference, 2005: 5-7.
[22]  Luo Xing, Sun Hao, Wang Jihong. An energy efficient pneumatic-electrical system and control strategy development[J]. Proceedings of the American Control Conference, 2011: 4743-4748.
[23]  Wang J, Yang L, Luo X, et al. Mathematical modelling study of scroll air motors and energy efficiency analysis part I[J]. IEEE/ASME Transactions on Mechatronics, 2011, 16(1): 112-121.
[24]  Xiang Gao, Feng Zhengjin. Design study of an adaptive fuzzy-PD controller for pneumatic servo system[J]. Control Engineering Practice, 2005, 13(1): 55-65.
[25]  Pandian S R, Takemura F. Control performance of an air motor[C]. Proceeding of the IEEE Int. Conference on Robotics and Automation, 1999: 518-524.
[26]  Marumo R, Tokhi M O. Intelligent modeling and control of a pneumatic motor[C]. Proceedings of the Canadian Conference on Electrical and Computer Engineering, 2004: 1163-1166.
[27]  Tafticht T, Agbossou K, Cheriti A. DC bus control of variable speed wind turbine using a buck-boost converter[C]. Proceedings of the Power Engineering Society General Meeting, 2006: 1-5.
[28]  崔纳新, 张承慧, 杜春水. 变频调速异步电动机效率优化控制的研究进展[J]. 电工技术学报, 2004, 19(5): 36-42.
[29]  Cui Naxin, Zhang Chenghui, Du Chunshu. Advances in efficiency optimization control of inverter-fed induction motor drives[J]. Transactions of China Electrotechnical Society, 2004, 19(5): 36-42.
[30]  Chu Xiaoguang, Zhang Chenghui, Li Ke. Dynamic modeling and efficiency analysis of the scroll expander generator system for compressed air energy storage[C]. Proceedings of the International Conference on Electrical Machines and Systems, 2011: 1-5.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133