全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

应变下Nb3Sn基CICC温度分布变化模型

, PP. 169-173

Keywords: 应变,CICC,分流温度,温度裕度

Full-Text   Cite this paper   Add to My Lib

Abstract:

分流温度和温度裕度是管内电缆导体(CICC)稳定运行的关键因素,为应对10T以上的磁场冲击,国际热核聚变反应堆ITER装置上的CS和TF等已采用铌三锡(Nb3Sn)导体,但缺乏应变效应对分流温度和温度裕度分布影响的研究。本文根据在SULTAN对TF样品分流温度和温度裕度的测量数据,首先在无应变下,对由分流温度和温度裕度的改善使得TFCN导体的稳定性得到提高进行分析。然后用周期载荷模拟应变,在600周期和1000周期时,分析CICC分流温度和温度裕度的恶化情况。最后由假设条件,推理并获得分流温度随周期载荷变化的双对数分布模型,该模型能很好描述TFCN导体样品中由周期载荷导致的弯曲应变所产生的性能降级情况。

References

[1]  Dresener L. Twenty years of cable-in-conduit conductors :1975-1995[J]. Journal of Fusion Eneryg, 1995, 14(1): 3-12.
[2]  Ciazynski D. Review of Nb3Snsuperconductors for ITER [J]. Fusion Engineering Design, 2007, 82(2-3): 488-497.
[3]  刘方, 翁佩德, 武玉, 等. 超导股线Nb3Sn的性能测试研究[J]. 低温物理学报, 2007, 29(1): 68-72.
[4]  Liu Fang, Weng Peide, Wu Yu, et al. Study on the performance test of superconducting strand Nb3Sn [J]. Chinese Journal of Low Temperature Physics, 2007, 29(1): 68-72.
[5]  Zhang P X, Liang M, Tang X D, et al. Strain influence on Jc behavior of Nb3Sn multifilamentary strands fabricated by internal tin process for ITER[J]. Physica C, 2008, 468(15-20): 1843-1846.
[6]  程军胜, 王秋良, 戴银明. 低温超导体Nb3Sn扩散热处理中显微组织的表征与分析[J] .稀有金属材料与工程, 2008, 37(S4): 189-192.
[7]  王秋良. 高磁场超导磁体科学[M]. 北京: 科学出版社. 2008.
[8]  蒋华伟, 武松涛. 应变下管内电缆导体交流损耗计算模型[J]. 中国科学: 技术科学, 2012, 42(5): 576-583.
[9]  蒋华伟, 武松涛, 成俊生. 管内电缆导体结构模拟设计优化模型[J]. 科学通报, 2011, 56(6): 440-445.
[10]  方进. HT-7U管内电缆导体的稳定性理论及实验研究[D]. 合肥: 中国科学院等离子体物理研究所, 2002.
[11]  Wesche R, Bagnasco M, Bruzzone P, et al. Results of conductor testing in SULTAN: a review[C]. Proceedings of the IEE WAMSDO-Accelerator Magnet Superconductors, Design and Optimization, 2009: 68-77.
[12]  Seeber B. Hand book of applied superconductivity[M]. London: Institute of Physics Publication, 1998.
[13]  Yan L G. Recent progress of superconducting magnet technology in China[J]. IEEE Transaction on Applied Superconductivity, 2010, 20(3): 123-134.
[14]  Liu B, Wu Y, Liu F, et al. Axial strain characterization of the Nb3Sn strand used for China's TF conductor [J]. Fusion Engineering Design, 2011, 86(1): 1-4.
[15]  梁明, 张平祥, 唐先德. 应变对Nb3Sn多芯股线载流能力的影响析[J]. 金属学报, 2009, 45(2): 223-226
[16]  Liang Ming, Zhang Pingxiang, Tang Xiande. Strain effect on transport properties of Nb3Sn multifilament strands prepared by internal tin toute[J]. Acta Metallurgica Sinica, 2009, 45(2): 223-226.
[17]  Cheng Junsheng, Wang Qiuliang, Dai Yinming. Characterization and analysis of microstructures of Nb3Sn multifilamentary superconductors during diffusion treatment by bronze route [J]. Rare Metal Materials and Engineering, 2008, 37(S4): 189-192.
[18]  Breschi M, Corato V, Fiamozzi C, et al. Analysis of transverse resistance measurements in Nb3Sn superconducting wires[J]. IEEE Transaction on Applied Superconductivity, 2011, 21(3): 2372-2375.
[19]  Miyoshi Y, Ilyin Y, Abbas, et al. AC Loss, inter-strand resistance, and mechanical properties of an option-II ITER CICC up to 30, 000 cycles in the press[J]. IEEE Transactions on Applied Superconductivity, 2011, 21(3): 1944-1947.
[20]  Jiang Huawei, Wu Songtao. Calculation model of AC loss for CICC(cable-in-conduit conductor)based on strain[J]. Science China Technological Sciences, 2012, 55(4): 1132-1139.
[21]  Jiang Huawei, Wu Sogntao, Cheng Junsheng. Optimization model of a structural simulation design for a CICC[J]. Chinese Science Bulletin, 2011, 56(27): 2978-2983.
[22]  Bottura L, Luongo C. Superconductors, stability in forced flow. In: John G W, ed. wiley encyclopedia of electrical and electronic engineering[M]. Milton: John Wiley & Sons, 1999.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133