全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

磁致伸缩、压电层状复合磁电传感器非线性动态有限元模型

, PP. 146-152

Keywords: 磁电传感器,有限元,Hamilton原理,磁致伸缩,压电效应

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于磁致伸缩材料标准平方模型和压电材料线性本构关系,应用Hamilton变分原理建立了磁电传感器的磁-机-电耦合特性的动力学方程。建立的动力学方程考虑了磁致伸缩材料的磁滞现象和ΔE效应的影响。应用所建立的模型求解了LT型磁致伸缩/压电磁电传感器的输出特性,与实验结果进行对比发现模型可较准确地预测磁电传感器在不同偏置磁场和交流驱动磁场激励下其输出电压随时间的变化关系。当偏置磁场为22.1kA/m,正弦交流驱动磁场为7.4kA/m、频率为100Hz时,计算结果和实验结果误差为0.9%。同时,应用该模型还可以确定磁电传感器的最大交流驱动磁场。

References

[1]  万永平, 方岱宁, 黄克智. 磁致伸缩材料的非线性本构关系[J]. 力学学报, 2001, 33(6): 749-757.
[2]  李淑英, 王博文, 周严, 等. 叠层复合磁致伸缩材料驱动器的输出位移特性[J]. 仪器仪表学报. 2009, 30(1): 71-75.
[3]  Li Shuying, Wang Bowen, Zhou Yan, et al. Output displacement of actuator based on terfenol-D multilayered composite [J]. Chinese Journal of Scientific Instrument, 2009, 30(1): 71-75.
[4]  Nicolas Galopin, Xavier Mininger, Frédéric Bouillault, et al. Finite element modeling of magnetoelectric sensors [J]. IEEE Transactions on Magnetics, 2008, 44 (6): 834-837.
[5]  曹淑瑛, 王博文, 闫荣格, 等. 超磁致伸缩致动器的磁滞非线性动态模型[J]. 中国电机工程学报, 2003, 23(11):145-149.
[6]  Li Shuying, Wang Bowen, Zhou Yan, et al. Magneto- electric effect of Terfenol-D/PZT/Terfenol-D laminate composite sensors[J]. Transactions of China Electrotechnical Society, 2010, 25(5): 14-19.
[7]  刘巍. 超磁致伸缩薄膜的磁机耦合特性及其在泳动机器人中的应用[D]. 大连: 大连理工大学, 2006.
[8]  张纳, 王博文, 李淑英, 等. 基于磁场传感器的层状磁电复合材料动态特性的有限元模型研究[J]. 仪器仪表学报, 2010, 31(7): 1528-1534.
[9]  Toshiyuki Ueno, Toshiro Higuchi. High sensitive and heat-resistant magnetic sensor using magnetostrictive/ piezoelectric laminate composite[J]. IEEE Transactions on Magnetics, 2005, 4(10): 3670-3672.
[10]  Evangelos Hristoforou, Aphrodite Ktena. Magnetos- triction and magnetostrictive materials for sensing applications[J]. Journal of Magnetism and Magnetic Materials, 2007, 316(2): 372-378.
[11]  Liu G, Nan C W, Cai N, et al. Dependence of giant magnetoelectric effect on interfacial bonding for multiferroic laminated composites of rare-earth-iron alloys and lead-zirconate-titanate[J]. Journal of Applied Physics, 2004, 95(5): 2660-2664.
[12]  Wan Yongping, Fang Daining, Huang Kezhi. Nonlinear constitutive relations for magnetostrictive materials[J]. Acta Mechanica Sinica, 2001, 33(6): 749-757.
[13]  Wan Y P, Zhong Z. Magnetic bias field dependence of the magnetoelectric effect in a magnetoelectric structure: a simple model [J]. Modern Physics Letter B, 2004, 18(18): 963-969.
[14]  Cao Shuying, Wang Bowen, Yan Rongge, et al. Dynamic model with hysteretic nonlinearity for a giant magnetostrictive actuator[J]. Proceedings for CSEE, 2003, 23(11): 145-149.
[15]  Zhen X J, Liu X E. A nonlinear constitutive model for Terfenol-D rods[J]. Journal of Applied Physics, 2005, 97(5): 053901-053908.
[16]  Bichurin M I, Petrov V M, Srinivasan G. Theory of low frequency magnetoelectric effects in ferromagnetic- ferroelectric layered composites[J]. Journal of Applied Physics, 2002, 92(12): 7681-7683.
[17]  李淑英, 王博文, 周严, 等. Terfenol-D/PZT/ Terfenol-D层状复合磁电传感器磁电效应[J]. 电工技术学报, 2010, 25(5): 14-19.
[18]  Zhang Na, Wang Bowen, Li Shuying, et al. Finite element model of dynamic characteristics for layered magnetoelectric composites based on magnetic sensor[J]. Chinese Journal of Scientific Instrument, 2010, 31(7): 1528-1534.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133