全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

“点”“域”结合法在低频振荡分析中的应用

, PP. 134-139

Keywords: 经验模态分解,固有模态函数,虚拟空间场,矩阵,复奇异值分解,能量比,振荡模态形状

Full-Text   Cite this paper   Add to My Lib

Abstract:

随着互联电网规模的不断扩大,大区互联电网区域间的低频振荡已成为威胁电力系统安全的重要因素之一。基于传统的希尔伯特-黄变换(HHT)和复奇异值分解(C-SVD),本文提出了一种“点”“域”结合的低频振荡分析方法。对于测量“点”,也就是单一的测量信号,首先对滤波去噪以后的信号进行经验模态分解(EMD),得到固有模态函数(IMFs),并建立虚拟空间场来分析IMFs之间的能量分布关系,然后利用Hilbert变换来计算主导振荡模态的时变振荡参数;对于测量“域”,利用C-SVD来提取主导振荡模态的动态时变特性和能量空间分布。通过比较“点”和“域”的计算结果来确定主导振荡模态的时变振荡参数和空间分布。仿真算例和实测数据的计算结果证明算法的可行性和有效性。

References

[1]  Yang Dechang, Li Yong, C Rehtanz, et al. Overview of smart transmission system in China[J]. Power System Technology, 2010, 34(5): 1-6.
[2]  刘振亚. 特高压电网[M]. 北京: 中国经济出版社, 2005.
[3]  朱方, 汤涌, 张东霞, 等. 我国交流互联电网动态稳定性的研究及解决策略[J]. 电网技术, 2004, 28(15): 1-5.
[4]  Kamwa I, Beland J, Trudel G, et al. Wide-area monitoring and control at Hydro-Quebec: Past, present and future[C]. Proceedings of IEEE Power Engineering Society General Meeting, Canada, Montreal, 2006.
[5]  Peter O' S. The use of sliding spectral windows for parameter estimation in power system disturbance monitoring[J]. IEEE Transactions on Power Systems, 2000, 15(4): 1261-1267.
[6]  肖晋宇, 谢小荣, 胡志祥. 电力系统低频振荡在线辨识的改进Prony算法[J]. 清华大学学报(自然科学版), 2004, 44(7): 883-887.
[7]  李天云, 高磊, 赵妍. 基于HHT 的电力系统低频振荡分析[J]. 中国电机工程学报, 2006, 26(14): 24-29.
[8]  Li Tianyun, Gao Lei, Zhao Yan. Analysis of low frequency oscillations using HHT method[J]. Proceedings of the CSEE, 2006, 26(14): 24-29.
[9]  穆钢, 史坤鹏, 安军, 等. 结合经验模态分解的信号能量法及其在低频振荡研究中的应用[J]. 中国电机工程学报, 2008, 28(19): 36-41.
[10]  Mu Gang, Shi Kunpeng, An Jun, et al. Signal energy method based on EMD and its application to research of low frequency oscillation[J]. Proceedings of the CSEE, 2008, 28(19): 36-41.
[11]  Tadeja B, Uros G, Bojan M, et al. Wide area measurement system in action[C]. 2007 IEEE Lausanne Power Tech, Lausanne, Switzerland, 2007.
[12]  杨德昌, 李勇, C Rehtanz, 等. 智能输电系统在中国的发展[J]. 电网技术, 2010, 34(5): 1-6.
[13]  余贻鑫, 李鹏. 大区电网弱互联对互联系统阻尼和动态稳定性的影响[J]. 中国电机工程学报, 2005, 25(11): 7-10.
[14]  Yu Yixin, Li Peng. The impact of weak interconnection of bulk power grids to damping and dynamic stability of power system[J]. Proceedings of the CSEE, 2005, 25(11): 7-10.
[15]  Zhu Fang, Tang Yong, Zhang Dongxia, et al. Study on dynamic stability problems of AC interconnected area power grids in China and their solutions[J]. Power System Technology, 2004, 28(15): 1-5.
[16]  Xiao Jinyu, Xie Xiaorong, Hu Zhixiang. Improved Prony method for online identification of low-frequency oscillations in power systems[J]. Journal of Tsinghua University (Science and Technology), 2004, 44(7): 883-887.
[17]  Rueda J L, Juarez C A, Erlich I. Wavelet-based analysis of power system low-frequency electrome- chanical oscillations[J]. IEEE Transactions on Power System, 2011, 99(2): 1-11.
[18]  Cai G W, Yang D Y, Jiao Y. et al. Power system low frequency oscillations analysis and parameter determination of adaptive PSS based on stochastic subspace identification[C]. Proceedings in Power and Energy Engineering Conference, Chengdu, China, 2009.
[19]  Messina A R. Inter-area oscillations in power systems a non-linear and non-stationary perspective[M]. Berlin: Springer Press, 2009.
[20]  Messina A R, Vittal V. Extraction of dynamic patterns from wide-area measurements using empirical orthogonal functions[J]. IEEE Transactions on Power Systems, 2007, 22(2): 682-692.
[21]  Esquivel P. Wide area wave motion analysis using complex empirical orthognal functions[C]. Proceedings of 6th International Conference on Electrical Engineering, Computing Science and Automatic Control, Mexico, Toluca, 2009.
[22]  Kundur P. Power system stability and control[M]. NewYork: McGraw-Hill, 1994.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133