全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

应用线搜索滤波器内点法求解最优协调电压控制问题

, PP. 70-77

Keywords: 协调电压控制,直接动态优化,Radau排列,非线性原对偶内点算法,线搜索滤波器方法

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于准稳态模型,协调电压控制问题表示为含连续-离散时间的微分-代数方程约束的最优控制模型。采用直接动态优化方法求解该代数-微分方程优化问题。利用Radau排列法将研究时间段划分为有限个区间,将所有状态变量、代数变量和控制变量在每个区间内用一系列多项式近似,从而将动态优化问题转化为非线性规划问题。引入一种改进的原对偶内点法求解该非线性规划模型。基于线搜索滤波器的内点法有着良好的收敛性能,能快速获得最优解。从IEEE17机162节点系统的仿真结果看出,该方法能求出有效控制量以增强系统的长期电压稳定性。

References

[1]  Fletcher R, Leyffer S. Nonlinear programming without a penalty function[J]. Mathematical Programming, 2002, 91(1): 239-269.
[2]  Surry P D, Radcliffe N J, Boyd I D. A multi-objective approach to constrained optimization of gas supply networks: the COMOGA method[M]. Lecture Notes In Computer Science, Berlin, Springer Verlag , 1995, 993: 166-180.
[3]  Ulbrich M, Ulbrich S, Vicente L N. A globally convergent primal-dual interior-point filter method for nonlinear programming[J]. Mathematical Prog- ramming, 2004, 100(2): 379-410.
[4]  Fletcher R, Leyffer, Toint P L. On the global convergence of a filter-SQP algorithm[J]. SIAM Journal on Optimization, 2002, 13(1): 44-59.
[5]  Conn A R, Gould N I M, Orban D, et al. A primal-dual trust-region algorithm for non-convex nonlinear programming[J]. Mathematical Programming, 2000, 87(2): 215-249
[6]  Byrd R H, Liu G, Nocedal J. On the local behavior of an interior point method for nonlinear programming. Numerical Analysis, Reading, MA, USA: Wesley Longman, 1997.
[7]  Liu Mingbo, Tso S K, Cheng Ying.An extended nonlinear primal-dual interior-point algorithm for reactive-power optimization of large-scale power systems with discrete control variables[J]. IEEE Transactions on Power Systems, 2002, 17(4): 982-991.
[8]  程莹, 刘明波.含离散控制变量的大规模电力系统无功优化[J]. 中国电机工程学报, 2002, 22(5): 54-60.
[9]  Cheng Ying, Liu Mingbo. Reactive-power optimization of large-scale power systems with discrete control variables[J]. Proceedings of the CSEE, 2002, 22(5): 54-60.
[10]  郑文杰, 刘明波. 最优协调电压控制准稳态模型及其直接动态优化方法[J]. 中国电机工程学报, 2009, 29(31): 53-59.
[11]  Zheng Wenjie, Liu Mingbo. Quasi steady-state model of optimal coordinated voltage control and its direct dynamic optimization approach[J]. Proceedings of the CSEE, 2009, 29(31): 53-59
[12]  Hairer E, Nørsett S P, Wanner G. Solving ordinary differential equations Ⅱ: stiff and differential- algebraic problems[M]. 北京: 科学出版社, 2006.
[13]  Wächter A, Biegler L T. Global and local convergence of line search filter methods for nonlinear programming[R]. Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, 2001.
[14]  Lemar´echal C, Nemirovskii A, Nesterov Y. New variants of bundle methods[J]. Mathematical Programming, 1995, 69(1): 111-147.
[15]  Fletcher R, Gould N I M, Leyffer S, et al. Global convergence of a trust-region SQP filter algorithm for general nonlinear programming[J]. SIAM Journal on Optimization, 2002, 13(3): 635-659.
[16]  Jabr R A, Coonick A H, Cory B J. A primal-dual interior point method for optimal power flow dispatching[J]. IEEE Transactions on Power Systems, 2002, 17(3): 654-662.
[17]  Benson H Y, Shanno D F. Interior-point methods for nonconvex nonlinear programming: regularization and warmstarts[J]. Computational Optimization and Applications, 2000, 40(2): 143-189.
[18]  Curtis F, Nocedal J. Steplength selection in interior-point methods for Quadratic programming[J]. Applied Math Letters, 2007, 20(5): 516-523.
[19]  Nocedal J, Waechter A, Waltz R. Adaptive barrier update strategies for nonlinear interior methods[J]. SIAM Journal on Optimization, 2009, 19 (4): 1674-1693.
[20]  Lage G G, de Sousa V A, da Costa G R M. Optimal power flow solution using the penalty/modified barrier method[C]. IEEE Bucharest Power Tech Conference, 2009: 1-6.
[21]  Torres G L. Nonlinear optimal power flow by interior and non-interior point methods[D]. Waterloo: University of Waterloo, 1998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133