全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Lorentzian函数的Preisach磁滞模型辨识与验证

, PP. 1-7

Keywords: Preisach磁滞模型,分布函数,解析法,神经网络,爱泼斯坦方圈

Full-Text   Cite this paper   Add to My Lib

Abstract:

磁滞作为磁性材料的特性,在电机、变压器等设备中普遍存在,为了更好地描述材料的这种特性,有必要建立材料的磁滞数学模型。本文基于Presiach类磁滞模型,通过分别用解析和神经网络两种方法对其Lorentzian分布函数参数进行了辨识并对两种方法进行了比较,且通过实验验证了辨识结果的正确性。模型可以对无偏磁下变压器一次电流进行预测,实验采用爱泼斯坦方圈的二次电压仿真得到了方圈的一次电流,仿真与实验结果对比验证了模型的正确性。

References

[1]  Mayergoyz I D. Mathematical models of hysteresis[J]. IEEE Transactions on Magnetics, 1986, 22(5): 603- 608.
[2]  David L Atherton, Beattie J R. A mean field Stoner-Wohlfarth hysteresis model[J]. IEEE Transactions on Magnetics, 1990, 26(6): 3059-3063.
[3]  Jiles D C, Atherton D L. Ferromagnetic hysteresis[J]. IEEE Transactions on Magnetics, 1983, 19(5): 2183-2185.
[4]  刘硕. 磁场数值计算中的材料模型问题的研究[D]. 天津:河北工业大学, 2000.
[5]  Bernard Y, Mendes E, Bouillault F. Dynamic hysteresis modeling based on Preisach model[J]. IEEE Transactions on Magnetics, 2002, 38(2): 885-888.
[6]  张新刚, 王泽忠, 徐春丽. Preisach理论及其在铁心磁化过程建模中的应用[J]. 高电压技术, 2005, 31(9):14-17.
[7]  Zhang Xingang, Wang Zezhong, Xu Chunli. Preisach theory and its application to magnetization modeling of magnetic core [J]. High Voltage Engineering, 2005, 31(9): 14-17.
[8]  曹林, 何金良, 张波. 直流偏磁状态下电力变压器铁心动态磁滞损耗模型及验证[J]. 中国电机工程学报, 2008, 28(24): 141-146.
[9]  Cao Lin, He Jinliang, Zhang Bo. Dynamic hysteresis loss model of power transformer under DC current biasing and its verification [J]. Proceedings of the CSEE, 2008, 28(24): 141-146.
[10]  Torre E D. Magnetic Hysteresis[M]. Piscataway, NJ: IEEE Press, 1999.
[11]  Bertotti. Hysteresis in magnetism[M]. New York: Academic, 1998.
[12]  Finocchioa G, Carpentieria M. Analytical solution of everett integral using Lorentzian Preisach function approximation[J]. Journal of Magnetism and Magnetic Materials, 2006, 300: 451-470.
[13]  Hagan Martin T, Demuth Howard B, Beale Mark H. 神经网络设计[M]. 北京:机械工业出版社, 2006.
[14]  Hodgon M L. Applications of theory of ferromagnetic hysteresis models and experimental[J]. IEEE Transactions on Magnetics, 1988, 24(1): 218-221.
[15]  Mayergoyz I D. Mathematical models of hysteresis and their applications[M]. New York: Academic, 2003.
[16]  Maurizio Cirrincione, Rosario Miceli. Preisach function identification by neural networks[J]. IEEE Transactions on Magnetics, 2002, 38(5): 2421-2423.
[17]  Adly A A, Abd El Hafiz S K. Using neural networks in the identification of Preisach-type hysteresis models[J]. IEEE Transactions on Magnetics, 1998, 34(3): 629-635.
[18]  Maurizio Cirrincione, Rosario Miceli. A novel neural approach to the determination of the distribution function in magnetic Preisach systems[J]. IEEE Transactions on Magnetics, 2004, 40(4): 2131-2133.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133