全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

无功发生源抑制次同步振荡的机理分析

, PP. 168-174

Keywords: 次同步振荡,复数力矩系数法,固定串补电容器,RTDS

Full-Text   Cite this paper   Add to My Lib

Abstract:

详细地分析了无功发生源抑制电力系统次同步振荡(SSO)的机理,给出了系统附加电气阻尼的数学表达式和系统的影响因素。并建立了汽轮发电机组转子的集中多质量块弹性轴系的数学模型及轴系解耦运动方程式,以此为基础利用复转矩系数法解析地求解了与系统连接的快速控制无功发生源能有效地提高发电机组的次同步振荡的电气阻尼。最后,应用实时数字仿真器(RTDS)搭建了一个由固定串补引起的单机次同步振荡的电磁暂态仿真模型,仿真结果证实了无功发生源对汽轮发电机组次同步振荡具有显著的抑制效果。

References

[1]  徐政. 复转矩系数法的适用性分析及其时域仿真实现[J]. 中国电机工程学报, 2000, 20(6): 1-4.
[2]  何仰赞, 温增银. 电力系统分析[M]. 武汉:华中科技大学出版社, 2002.
[3]  Padiyar K R, Varma R K. Damping torque analysis of static var system controllers[J] IEEE Transactions on Power System, 1991, l6(2): 458-465.
[4]  IEEE Committee Report. Reader's guide to subsyn- chronous resonance [J]. IEEE Transactions on Power Systems, 1992, 7(1): 150-157.
[5]  IEEE Subsynchronous Resonance Working Group. Proposed terms and definitions for subsynchronous oscillation[J]. IEEE Transactions on Power Apparatus and System, 1980, 99(2): 506-511.
[6]  IEEE Subsynchronous Resonance Working Group. First benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and System, 1977, 96(5): 1565- 1572.
[7]  Walker D N, Bowler C E, Jackson R L, et al. Results of subsynchronous resonance test at mohave[J]. IEEE Transactions on Power Apparatus and System, 1975, 94(5): 1878-1889.
[8]  倪以信, 陈寿孙, 张宝霖. 动态电力系统的理论和分析[M]. 北京:清华大学出版社, 2002.
[9]  Keshavan B K, Prabhu N. Damping of subsyn- chronous oscillations using STATCOM-a FACTS controller[C]. International Conference on Power System Technology, 2004: 12-16.
[10]  IEEE Subsynchronous Resonance Working Group. Second Benchmark model for computer simulation of subsynchronous resonance[J]. IEEE Transactions on Power Apparatus and System, 1985, 104(5): 1057- 1066.
[11]  IEEE Subsynchronous Resonance Working Group. Terms, definitions and symbols for subsynchronous oscillations[J]. IEEE Transactions on Power Apparatus and Systems, 1985, 104(6): 1326-1334.
[12]  Prabha Kundur. Power system stability and control[M]. New York: McGraw-Hill Inc, 1994.
[13]  Xu Zheng. The complex torque coefficient approach’s applicabiliby analysis and its realization by time domain simulation[J]. Proceedings of the CSEE, 2000, 20(6): 1-4.
[14]  张帆. 电力系统次同步振荡抑制技术[D]. 杭州:浙江大学, 2007.
[15]  刘取. 电力系统稳定性及发电机励磁控制[M]. 北京:中国电力出版社, 2007.
[16]  程时杰, 曹一家, 江全元. 电力系统次同步振荡的理论与方法[M]. 北京:科学出版社, 2009.
[17]  王锡凡. 现代电力系统分析[M]. 北京:科学出版社, 2003.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133