全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

镍粉/环氧树脂复合材料的压敏性

, PP. 1-6

Keywords: 镍粉,环氧树脂,压敏性,应力/应变,电阻率

Full-Text   Cite this paper   Add to My Lib

Abstract:

探讨了镍粉/环氧树脂复合材料电阻率的测试方法,研究了不同镍粉掺量、不同柔韧性环氧树脂掺量的镍粉/环氧树脂复合材料在单轴压缩下的电阻率变化规律,并结合镍粉/环氧树脂复合材料的静态电阻率和压力下的体积变化讨论了其压敏性产生机理。研究结果表明采用直流两端电极法与直流四端电极法所测得的镍粉/环氧树脂复合材料的电阻值较为一致,应用直流两端电极法测试所制备的镍粉/环氧树脂复合材料的电阻率是可行的;所制备的镍粉/环氧树脂复合材料具有良好的压敏性,在0~12.5MPa的压应力作用下,电阻率变化率幅值最大可达69.98%;随镍粉掺量减小和柔韧性环氧树脂掺量增加,复合材料压敏性灵敏度增加;镍粉/环氧树脂复合材料在压应力作用下体积减小而引起的导电填料间隧道效应增强是产生压敏性的原因。

References

[1]  Carmona R, Conet R, Delhaes P. Piezoresistivity of heterogeneous solids[J]. Journal of Applied Physics, 1987, 61(7): 2550-2557.
[2]  Celzard A, Mcrae E, Mareche J F, et al. Conduction mechanisms in some graphite-polymer composites: effects of temperature and hydrostatic pressure[J]. Journal of Applied Physics, 1998, 83(3): 1410-1419.
[3]  Wang X J, Chung D D L. Piezoresistive behavior of carbon fiber in epoxy[J]. Carbon, 1997, 35(10-11): 1649-1651.
[4]  Park J M, Kim S J, Yoon D J, et al. Self-sensing and interfacial evaluation of Ni nanowire/polymer composites using electro-micromechanical technique[J]. Composites Science and Technology, 2007, 67: 2121-2134.
[5]  Ji Xiaoyong, Li Hui, Ou Jinping. Electro-mechanical properties and mechanism of carbon black filled epoxy-based composites[J]. Acta Materiae Compositae Sinica, 2007, 24(4): 13-21.
[6]  张志刚. 功能复合材料[M]. 北京:化学工业出版社, 2004.
[7]  Bloor D, Donnelly K, Hands P J, et al. A metal-polymer composite with unusual properties[J]. Journal of Physics D: Applied Physics, 2005, 38(16): 2851-2860.
[8]  韩宝忠, 韩宝国, 张坤, 等. 镍粉粒子形态对硅橡胶基复合材料拉敏性能的影响[J]. 稀有金属材料与工程, 2008, 37(12): 2226-2230.
[9]  Han B G, Han B Z, Ou J P. Experimental study on use of metal powder-filled cement-based composite for fabrication of piezoresistive sensors with high sensitivity[J]. Sensors and Actuators: A Physical, 2009, 149(1):51-55.
[10]  Han B G, Guan X C, Ou J P. Electrode design, measuring method and data acquisition system of carbon fiber cement paste piezoresistive sensors[J]. Sensors and Actuators: A Physical, 2007, 135(2): 360-369.
[11]  Zhang Xiongwei, Huang Rui. Polymer electrical conductive composites and their application developments[J]. Journal of Functional Materials, 1994, 25(6): 492-499.
[12]  Jiang M J, Dang Z M, Xu H P, et al. Effect of aspect ratio of multiwall carbon nonotubes on resistance- pressure sensitivity of rubber nanocomposites[J]. Applied Physics Letters, 2007, 91:1-3.
[13]  季小勇, 李惠, 欧进萍. 不同直径炭黑环氧树脂基复合材料力电性能及其机理[J]. 复合材料学报. 2007, 24(4): 13-21.
[14]  Han B G, Ou J P. Embedded piezoresistive cement- based stress/strain sensor[J]. Sensors and Actuators: A Physical, 2007, 138(2): 294-298.
[15]  Han Baozhong, Han Baoguo, Zhang Kun, et al. Effect of shape of nickel powder on pulling-sensitivity of silicon rubber-matrix composites[J]. Rare Metal Materials and Engineering, 2008, 37(12): 2226-2230.
[16]  Han B G, Yu Y, Han B Z, et al. Development of a wireless stress/strain measurement system integrated with pressure-sensitive nickel powder-filled cement- based sensors[J]. Sensors and Actuators: A Physical, 2008, 147(2): 536-543.
[17]  张雄伟, 黄锐. 高分子复合导电材料及其应用发展趋势[J]. 功能材料, 1994, 25(6): 492-499.
[18]  万影, 闻荻江. 导电高分子复合材料及其特殊效应[J]. 自然杂志, 1999, 21(3): 149-153.
[19]  Wan Ying, Wen Dijiang. Conducting polymer compositers and their special effect[J]. Chinese Journal of Nature, 1999, 21(3): 149-153.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133