全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

牵引变流器直流母线电压脉动下的无拍频电流控制方法

, PP. 14-23

Keywords: 母线电压脉动,功率密度,拍频电流,补偿,重复预测器

Full-Text   Cite this paper   Add to My Lib

Abstract:

交流供电方式下,单相整流器的工作特性导致牵引变流器的输入功率呈现脉动形式。为吸收该脉动分量,业界主流方法是在直流母线上并联LC无源滤波器,该方案大大降低了装置的功率密度。取代该滤波器的有效途径是通过实时计算对牵引逆变器的PWM脉冲宽度进行精确补偿,使得逆变器即便工作于剧烈脉动的母线电压下,也不会输出有害的拍频电压/电流。然而对于大功率低开关频率应用场合,传统的前馈补偿方案效果不佳。本文提出了一种母线电压重复预测器,使前馈补偿性能得到极大改善。该预测器利用母线电压脉动的重复性,精确预测下一个开关周期内母线电压的平均值,再应用面积等效算法计算下一拍所需的脉冲宽度。稳态实验结果表明,相比传统的前馈补偿方法,本方法将逆变器输出侧的拍频电流降低了6~7倍。负载突变时,只需通过控制手段确保整流器输出的母线电压跌落小于10%,则动态过程中的拍频电流亦不大。

References

[1]  Salam Z, Goodman C J. Compensation of fluctuating DC link voltage for traction inverter drive[C]. Proceedings of the 6th International Conference on Power Electronics and Variable Speed Drives, Nottingham, UK, 1996: 390-395.
[2]  Cheok A, Kawamoto S, Matsumoto T, et al. AC drive with particular reference to traction drives[C]. Proceedings of the 4th International Conference on Advances in Power System Control, Operation and Management, Hong Kong, China, 1997, 1: 348-353.
[3]  Enjeti P N, Shireen W. A new technique to reject DC-link voltage ripple for inverters operating on programmed PWM waveforms[J]. IEEE Transactions on Power Electronics, 1992, 7(2): 171-180.
[4]  Flourentzou N, Agelidis V G. Harmonic performance of multiple sets of solutions of SHE-PWM for a 2-level VSC topology with fluctuating DC-link voltage[C]. Proceedings of Australasian Universities Power Engineering Conference, Perth, Australia, 2007: 1-8.
[5]  Klima J. Analytical investigation of influence of DC-link voltage ripple on PWM VSI fed induction motor drive[C]. Proceedings of the 1st IEEE Conference on Industrial Electronics and Applications, Singapore, 2006: 1-7.
[6]  Filizadeh S, Gole A M. Harmonic performance analysis of an OPWM-controlled STATCOM in network applications[J]. IEEE Transactions on Power Delivery, 2005, 20(2): 1001-1008.
[7]  Dahler P, Knapp G, Nold A. New generation of compact low voltage IGBT converter for traction applications[C]. Proceedings of European Conference on Power Electronics and Applications, Dresden, Germany, 2005: 1-9.
[8]  Xue Y S, Chang L C. Closed-loop SPWM control for grid-connected buck-boost inverters[C]. Proceedings of IEEE 35th Annual Power Electronics Specialists Conference, Aachen, Germany, 2004, 5: 3366-3371.
[9]  Filho M E, Gazoli J R, Filho A J S, et al. A control method for voltage source inverter without DC link capacitor[C]. Proceedings of IEEE 39th Annual Power Electronics Specialists Conference, Rhodes, Greece, 2008: 4432-4437.
[10]  Enjeti P, Shireen W. An advanced programmed PWM modulator for inverters which simultaneously eliminates harmonics and rejects DC link voltage ripple[C]. Proceedings of IEEE 5th Annual Applied Power Electronics Conference and Exposition, Los Angeles, USA, 1990: 681-685.
[11]  Kang Y, Chen L L. A voltage-mode controlled high-input-power-factor AC line conditioner with minimized output voltage harmonics[C]. Proceedings of IEEE 25th Annual Power Electronics Specialists Conference, Taipei, China, 1994, 1:369-374.
[12]  Lee J Y, Sun Y Y. Adaptive harmonic control in PWM inverters with fluctuating input voltage[J]. IEEE Transactions on Industrial Electronics, 1986, 33(1): 92-98.
[13]  Hadji S, Touhami O, Goodman C J.Vector-optimised harmonic elimination for single-phase pulse-width modulation inverters/converters[J]. IEE Transactions on Electric Power Applications, 2007, 1(3): 423-432.
[14]  Funabiki S, Sawada Y. A computative decision of pulse width in three-phase PWM inverter[C]. Proceedings of IEEE 23rd Industry Applications Society Annual Meeting, Pittsburgh, USA, 1988, 1: 694-699.
[15]  Chen Y M, Hsieh C H, Cheng Y M. Modified SPWM control schemes for three-phase inverters[C]. Proceedings of IEEE 4th International Conference on Power Electronics and Drive Systems, Indonesia, 2001, 2: 651-656.
[16]  Samir K, Pablo L, Mauricio A, et al. Multicarrier PWM with dc-link ripple feedforward compensation for multilevel inverters[J]. IEEE Transactions on Power Electronics, 2008, 23(1): 52-59.
[17]  Haneyoshi T, Kawamura A, Hoft R G. Waveform compensation of PWM inverter with cyclic fluctuating loads[J]. IEEE Transactions on Industry Applications, 1988, 24(3): 582-589.
[18]  Zhou K L, Wang D W, Zhang B, et al. Plug-in dual-mode-structure repetitive controller for CVCF PWM inverters[J]. IEEE Transactions on Industrial Electronics, 2009, 56(3): 784-791.
[19]  Wu X H, Panda S K, Xu J X. DC link voltage and supply-side current harmonics minimization of three phase PWM boost rectifiers using frequency domain based repetitive current controllers[J]. IEEE Transactions on Power Electronics, 2008, 23(4): 1987-1997.
[20]  Zhang K, Kang Y, Xiong J, et al. Direct repetitive control of SPWM inverter for UPS purpose[J]. IEEE Transactions on Power Electronics, 2003, 18(3): 784-792.
[21]  Tzou Y Y, Ou R S, Jung S L, et al. High-performance programmable AC power source with low harmonic distortion using DSP-based repetitive control technique[J]. IEEE Transactions on Power Electronics, 1997, 12(4): 715-725.
[22]  Cao R Z, Low K S. A repetitive model predictive control approach for precision tracking of a linear motion system[J]. IEEE Transactions on Industrial Electronics, 2009, 56(6): 1955-1962.
[23]  Zhang K, Kang Y, Xiong J, et al. Deadbeat control of PWM inverter with repetitive disturbance prediction[C]. Proceedings of IEEE 14th Annual Applied Power Electronics Conference and Exposition, Dallas, USA, 1999, 2: 1026-1031.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133