全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多标签RBF神经网络的电能质量复合扰动分类方法

, PP. 198-204

Keywords: 电能质量,多标签分类,径向基函数,小波变换,C-均值聚类

Full-Text   Cite this paper   Add to My Lib

Abstract:

在径向基(RBF)神经网络和C-均值聚类算法的基础上,提出一种适用于电能质量复合扰动分类的多标签排位分类算法—多标签径向基函数法(ML-RBF)。首先,对常见的电能质量扰动及其组合而成的复合扰动进行离散小波分解,提取各层分解系数的规范能量熵作为特征向量;然后采用C-均值聚类算法将所得的特征向量映射为RBF神经网络的输入;最后通过RBF神经网络对该电能质量复合扰动类型进行预测。仿真实验结果表明,在不同的噪声条件下,ML-RBF可以有效分类识别电能质量复合扰动。

References

[1]  Monedero I, Leon C, Ropero J, et al. Classification of electrical disturbances in real time using neural networks[J]. IEEE Transactions on Power Systems, 2007, 22(3): 1288-1296.
[2]  李庚银, 王洪磊, 周明. 基于改进小波能熵和支持向量机的短时电能质量扰动识别[J]. 电工技术学报, 2009, 24(4): 161-167.
[3]  刘昊, 唐轶, 冯宇, 等. 基于时域变换特性分析的电能质量扰动分类方法[J]. 电工技术学报, 2008, 23(11): 159-165.
[4]  占勇, 程浩忠. 电能质量复合扰动分类识别[J]. 电力自动化设备, 2009, 29(3): 93-97.
[5]  Chuang C L, Lu Y L, Huang T L, et al. Recognition of multiple PQ disturbances using dynamic structure neural networks-part 1: theoretical introduction[C]. Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Dalian, China, 2005.
[6]  Chuang C L, Lu Y L, Huang T L, et al. Recognition of multiple PQ disturbances using dynamic structure neural networks-part 2: implementation and applications[C]. Proceedings of the IEEE/PES Transmission and Distribution Conference and Exhibition, Dalian, China, 2005.
[7]  Lu Y L, Chuang C L, Fahn C S, et al. Multiple disturbances classifier for electric signals using adaptive structuring neural networks [J]. Mesurement Science and Technology, 2008, 19(7): 1-11.
[8]  Faisal M F, Mohamed A, Hussain A, et al. Support vector regression based S-transform for prediction of single and multiple power quality disturbances[J]. European Journal of Scientific Research, 2009, 34(2): 237-251.
[9]  Lima M A A, Ferreira D D, Cerqueira A S, et al. Separation and recognition of multiple PQ disturbances using independent component analysis and neural networks[C]. The 13th IEEE International Conference on Harmonics and Quality of Power, New South Wales, Australia, 2008.
[10]  Lin W M, Wu C H, Lin C H, et al. Detection and classification of multiple power quality disturbances with wavelet multiclass SVM[J]. IEEE Transactions on Power Delivery, 2008, 23(4): 2575-2582.
[11]  Vens C, Struyf J, Schietgat L, et al. Decision trees for hierarchical multi-label classification[J]. Machine Learning, 2008, 73(2): 185-214.
[12]  Zhang M L, Zhou Z H. Multi-label neural networks with applications to functional genomics and text categorization[J]. IEEE Transactions on Knowledge and Data Engineering, 2006, 18(10): 1338-1351.
[13]  Jiang A W, Wang C H, Zhu Y P. Calibrated rank- SVM for multi-label image categorization[C]. IEEE International Joint Conference on Neural Networks, Hong Kong, China, 2008.
[14]  Zhang M L, Peña J M, Robles V. Feature selection for multi-label naive Bayes classification[J]. Information Sciences, 2009, 179: 3218-3229.
[15]  Zhang M L. ML-RBF: RBF neural networks for multi-Label learning[J]. Springer Netherlands, 2009, 29(2): 61-74.
[16]  IEEE Std. 1159—2009, IEEE recommended practice for monitoring electric power quality[S].
[17]  齐敏, 李大健, 郝重阳. 模式识别导论[M]. 北京: 清华大学出版社, 2009.
[18]  V David Sánchez A. Searching for a solution to the automatic RBF network design problem[J]. Neuro- computing, 2002, 42: 147-170.
[19]  Uyar M, Yildirim S, Gencoglu M T. An effective wavelet-based feature extraction method for classification of power quality disturbance signals[J]. Electric Power Systems Research, 2008, 78: 1747-1755.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133