Zhong Yu, Gu Guochang, Zhang Rubo. Survey of distributed reinforcement learning algorithms in multi-agent systems[J]. Control Theory & Applications, 2003, 20(3): 317-322.
[3]
Xu Chuanpu, Yang Libing, Liu Fubin. Discuss on the Union implementation scheme of energy conservation measures and electricity marketability methods[J]. Automatic of Electric Power Systems, 2007, 31(23): 99-103.
[4]
Vlachogiannis J G, Hatziagyriou N D. Reinforcement learning for reactive power control[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1317-1325.
Zhong Yu, Gu Guochang, Zhang Rubo. Research on the architectures of distributed reinforcement learning systems[J]. Computer Engineering and Applications, 2003, 39(11): 111-113.
[7]
Jing Peng, Williams R J. Incremental multi-step Q-learning[J]. Machine Leaning, 1996(22): 283-290.
[8]
Richard S Sutton, Andrew G Barto. Reinforcement learning: an introduction[M]. Cambridge: MIT Press, 1998.
[9]
Yu Tao, Zhou Bin, Zhen Weiguo. Application and development of reinforcement learning theory in power systems[J]. Power System Protection and Control, 2009, 37(14): 122-128.
[10]
Kim B H, Baldick R. Coarse-grained distributed optimal power flow[J]. IEEE Transactions on Power Systems, 1997, 12(2): 932-939.
[11]
David I Sun, Bruce Ashley, Brian Brewer , et al. Optimal power flow by newton approach[J]. IEEE Transactions on Power Apparatus and Systems, 1984, 103(10): 2864-2880.
Wei Hua, Li Bin, Hang Naishan, et al. An implementation of interior point algorithm for large-scale hydro-thermal optimal power flow problems[J]. Proceedings of the CSEE, 2003, 23(6): 13-18.
[14]
Zhao Jinquan, Hou Zhijian, Wu Jishun. Some new strategies for improving the effectiveness of newton optimal power flow algorithm[J]. Proceedings of the CSEE, 1999, 19(12): 70-75.
[15]
周明, 孙树栋. 遗传算法原理及应用[M]. 北京: 国防工业出版社, 1999.
[16]
Luonan Chen, Hideki Suzuki, Kazuo Katou. Mean field theory for optimal power flow[J]. IEEE Transactions on Power Systems, 1997, 12(4): 1481-1486.
Pan Zhelong, Zhang Boming, Sun Hongbin et al. A distributid genetic algorithm for reactive power optimization[J]. Automaticon of Electric Power Systems, 2001, 6(13): 37-41.
[20]
Batut J, Renaud A. Daily generation scheduling optimization with transmission constraints[J]. IEEE Transactions on Power Systems, 2000, 7(3): 982-989.
Cheng Xingong, Li Jiwen, Cao Lixia, et al. Distribution and parallel optimal power flow solution of electric power systems[J]. Automation of Electric Power Systems, 2003, 27(24): 23-27.
Qiu Xiaoyan, Zhang Zijian, Li Xinyuan. Multi- objective reactive power optimization based on improved genetic-interior point algorithm[J]. Power System Technology, 2009, 33(13): 27-31.
Deb K, Pratap A, Agarwal S. A fast and elitist multi-objective genetic algorithm: NSGA-II[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(2): 182-197.
[33]
H L Liao, Q H Wu, L Jiang. Multi-objective optimization by reinforcement learning for power system dispatch and voltage stability[C]. Proceedings of IEEE PES Conference on Innovative Smart Grid Technologies Europe, Gothenburg, Sweden, 2010: 1-8.