全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

电磁声发射的实验与信号识别研究

, PP. 18-23

Keywords: 电磁声发射,信号处理,神经网络,信号识别

Full-Text   Cite this paper   Add to My Lib

Abstract:

电磁声发射技术是一种新型的无损检测技术,通过对金属部件进行电磁加载会在裂纹处激发出声发射信号,并利用这一现象实现对金属材料的无损检测。本文分析了电磁声发射技术的基本原理与实现过程,采用一种基于波形分析的神经网络模式识别方法,利用小波包变换提取出电磁声发射信号波形的识别特征参数,建立了由10个输入单元、18个隐含单元和单输出组成的人工神经网络识别系统。为了克服BP神经网络收敛速度慢的缺点,提出了一种输入单元数目可变的神经网络改进方法,实验表明该系统能够对有无裂纹板进行快速、准确的识别。

References

[1]  刘素贞, 杨庆新, 金亮, 等. 电磁声发射技术在无损检测中的应用研究[J]. 电工技术学报, 2009, 24(1): 23-27.
[2]  Kim K B, Yoon D J, Jeong J C, et al. Determining the stress intensity factor of a material with an artificial neural network from acoustic emission measurements[J]. NDT&E International, 2004, 37(6): 423-429.
[3]  Sasikumar T, RajendraBoopathy S, Usha K M, et al. Failure strength prediction of unidirectional tensile coupons using acoustic emission peak amplitude and energy parameter with artificial neural networks[J]. Composites Science and Technology, 2009, 69(7-8): 1151-1155.
[4]  Rajendraboopathy S, Sasikumar T, Usha K M, et al. Neural network prediction of failure strength of composite tensile specimens using acoustic emission counts[J]. Journal of Non Destructive Testing & Evaluation, 2008, 7(2): 21-26.
[5]  颜威利, 杨庆新, 汪友华, 等. 电气工程电磁场数值计算
[6]  [M]. 北京: 机械工业出版社, 2005.
[7]  陈明祥. 弹塑性力学
[8]  Leone C, Caprino G, de Iorio I. Interpreting acoustic emission signals by artificial neural networks to predict the residual strength of pre-fatigued GFRP laminates[J]. Composites Science and Technology, 2006, 66(2): 233-239.
[9]  Liu Suzhen, Yang Qinxin, Jin Liang. Application of electromagnetic acoustic emission technology in non-destructive testing[J]. Transactions of China Electro-technical Society, 2009, 24(1): 23-27.
[10]  Finkel P, Godinez V. Electromagnetic simulation of the ultrasonic signal for nondestructive detection of ferromagnetic inclusions and flaws[J]. IEEE Trans-actions on Magnetics, 2004, 40(4): 2179-2181.
[11]  Kuo C C. Artificial recognition system for defective types of transformers by acoustic emission[J]. Expert Systems with Applications, 2009, 36(7): 10304-10311.
[12]  [M]. 北京: 科学出版社, 2007.
[13]  Velayudham A, Krishnamurthy R, Soundarapandian T. Acoustic emission based drill condition monitoring during drilling of glass/phenolic polymeric composite using wavelet packet transform[J]. Materials Science and Engineering A, 2005, 412: 141-145.
[14]  Oliveira R de, Marques A T. Health monitoring of FRP using acoustic emission and artificial neural networks[J]. Computers and Structures, 2008, 86(3-5): 367-373.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133