全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于多物理场耦合的气体绝缘母线触头接触温升有限元计算

, PP. 408-413

Keywords: 气体绝缘母线,接触电阻,多组分传输,涡流场,温度场,多物理场耦合

Full-Text   Cite this paper   Add to My Lib

Abstract:

触头接触温升与气体绝缘母线的运行状态以及可靠性密切相关。建立了气体绝缘母线三维涡流场分析模型计算母线各部分原件的功率损耗,并将其作为热载荷输入流场以及温度场有限元分析模型,计算出了母线温度场分布。为了模拟接触电阻且不影响母线温度场分布情况,合理简化了触头结构。基于计算流体力学理论,采用多组分传输方法计算母线内外不同气体的对流换热问题,避免了反复迭代求解对流换热系数。考虑了接触电阻以及气体热物性参数随温度变化的特性。多物理场耦合计算结果与实测值的对比结果表明了接触电阻简化的合理性以及母线温升计算模型的有效性。所提出的模型对于母线触头过热状态监测提供了方法和依据。

References

[1]  Hwang C C, Chang J J, Jiang Y H. Analysis of electromagnetic and thermal fields for a bus duct system[J]. Electric power systems research, 1998, 45(1): 39-45.
[2]  纽春萍, 陈德桂, 刘颖异, 等. 交流接触器温度场仿真及影响因素的分析[J]. 电工技术学报, 2007, 22(5): 71-77. Niu Chunping, Chen Degui, Liu Yingyi, et al. Temperature field simulation of AC conductor and analysis of its influence factors[J]. Transactions of China Electro-technical Society, 2007, 22(5): 71-77.
[3]  Ho S L, Li Y, Lin X, et al. A 3-D study of eddy current field and temperature rises in a compact bus duct system[J]. IEEE Transactions on Magnetics, 2006, 42(4): 987-990.
[4]  谢德馨, 姚缨英, 白保东, 等. 三维涡流场的有限元分析[M]. 北京: 机械工业出版社, 2007: 10-13.
[5]  吴晓文, 舒乃秋, 李洪涛, 等. 基于流体多组分传输的气体绝缘母线温度场数值计算与分析[J]. 中国电机工程学报, 2012, 32(33): 141-147. Wu Xiaowen, Shu Naiqiu, Li Hongtao, et al. Thermal field calculation and analysis of gas insulated busbars based on fluid multiple species transport[J]. Proceedings of the CSEE, 2012, 32(33): 141-147.
[6]  李铁, 李伟力, 袁竹林. 用不同辐射模型研究下降管内传热传质特性[J]. 中国电机工程学报, 2007, 27(2): 92-98. Li Tie, Li Weili, Yuan Zhulin. Different radiative models for heat and mass transfer characteristics in vertical pipe[J]. Proceedings of the CSEE, 2007, 27(2): 92-98.
[7]  赵镇南. 传热学[M]. 北京: 高等教育出版社, 2008: 177-179.
[8]  Runde M, Lillevik O, Larsen V, et al. Condition assessment of contacts in gas-insulated substations[J]. IEEE Transactions on Power Delivery, 2004, 19(2): 609-617.
[9]  Fujinami H, Takuma T, Kawamoto T. Development of detection method with a magnetic field sensor for incomplete contact in gas-insulated switches and bus connecting parts[J]. IEEE Transactions on Power Delivery, 1995, 10(1): 229-236.
[10]  Purushothaman S, Leon F. Heat transfer model for toroidal transformers[J]. IEEE Transactions on Power Delivery, 2012, 27(2): 813-820.
[11]  Hedia H, Henrotte F, Meys B, et al. Arrangement of phase and heat constraints in a busbar[J]. IEEE Transactions on Magnetics, 1999, 35(3): 1274-1277.
[12]  Kim S W, Kim H H, Hahn S C, et al. Coupled finite- element-analytic technique for prediction of temperature rise in power apparatus[J]. IEEE Transactions on Magnetics, 2002, 38(2): 921-924.
[13]  Kim J K, Hahn S C, Park K Y, et al. Temperature rise prediction of EHV GIS bus bar by coupled magneto- thermal finite element method[J]. IEEE Transactions on Magnetics, 2005, 41(5): 1636-1639.
[14]  Ho S L, Li Y, Lin X, et al. Calculations of eddy current, fluid, and thermal fields in an air insulated bus duct system[J]. IEEE Transactions on Magnetics, 2007, 43(4): 1433-1436.
[15]  宋帆, 申春红, 林萃, 等. 800kVGIS隔离开关磁场-温度场计算与分析[J]. 高电压技术, 2008, 34(7): 1383-1388. SONG Fan, Shen Chunhong, Lin Cui, et al. Calculation and Analysis on Magnet-thermal Fields of 800Kv GIS Disconnector[J]. High Voltage Engineering, 2008, 34(7): 1383-1388.
[16]  Ho S L, Li Y, Edward W C, et al. Analyses of three- dimensional eddy current field and thermal problems in an isolated phase bus[J]. IEEE Transactions on Magnetics, 2003, 39(3): 1515-1518.
[17]  丁祖荣. 流体力学[M]. 北京: 高等教育出版社, 2003: 19-21.
[18]  Lee S H, Lee B Y, Kim H K, et al. Local heat source approximation technique for predicting temperature rise in power capacitors[J]. IEEE Transactions on Magnetics, 2009, 45(3): 1250-1253.
[19]  刘志刚, 耿英三, 王建华, 等. 基于流场-温度场耦合计算的新型空心电抗器设计与分析[J]. 电工技术学报, 2003, 18(6): 59-63. Liu Zhigang, Geng Yingsan, Wang Jianhua, et al. Design and analysis of new type air-core reactor based on coupled fluid-thermal field calculation[J]. Transactions of China Electrotechnical Society, 2003, 18(6): 59-63.
[20]  Eteiba M B, Aziz M M A, Shazly J H. Heat conduction problems in SF6 gas cooled-insulated power transformers solved by the finite element method[J]. IEEE Transactions on Power Delivery, 2008, 23(3): 1457-1463.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133