McBride J W, Pechrach K, Weaver P M. Arc root commutation from moving contacts in low voltage devices[J]. IEEE Transactions on Components, Packa- ging and Manufacturing Technology, 2001, 24(3): 331-336.
[2]
Doméjean E, Chévrier P, Fiévet C, et al. Arc-wall interaction modeling in a low-voltage circuit breaker[J]. J. Phys.D: Appl.Phys., 1997, 30(4): 2132-2142.
[3]
Patankar S V. Numerical heat transfer and fluid flow[M]. New York: McGraw-Hill, 1980.
[4]
Swierczynski B, Gonzalez J J, Teulet P, et al. Advances in low-voltage circuit breaker modeling[J]. J.Phys.D: Appl.Phys., 2004, 37(4): 595-609.
[5]
Zhang Jinling, Yan Jiudun, Michael T C Fang. Electrode evaporation and its effects on thermal arc behavior[J]. IEEE Transactions on Plasma Science, 2004, 32(3): 1352-1361.
Gleizes A, Gonzalez J J, Freton P. Thermal plasma modeling[J]. Journal of Physics D: Applied Physics, 2005, 38(1): 153-183.
[8]
Shea J J. The influence of arc chamber wall material on arc gap dielectric recovery voltage[J]. IEEE Transactions on Components, Packaging and Manu- facturing Technology, 2001, 24(3): 342-348.
[9]
McBride J W, Pechrach K, Weaver P M. Arc motion and gas flow in current limiting circuit breakers operating with a low contact switching velocity[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2002, 25(3): 427-433.
[10]
Gonzalez J J, Gleizes A. Mathematical modeling of a free-burning arc in the presence of metal vapor[J]. J.Appl.Phys., 1993, 74(5): 3065-3070.
[11]
Hsu K C, Etemadi K, Pfender E. Study of the free-burning high-intensity argon arc[J]. J.Appl.Phys., 1983, 54(3): 1293-1301.
[12]
Yang Qian, Rong Mingzhe, Anthony B Murphy, et al. The influence of magnetic field, chamber geometry and polymer vapour on low-voltage circuit breaker arcs[C]. IEICE Technical Report EMD, 2005: 80.
Lago F, Gonzalez J J, Fretont P Gleizes A, et al. A numerical modeling of an electric arc and its interaction with the anode: Part I. The two- dimensional model[J]. J.Phys.D: Appl.Phys., 2004, 37(4): 883-897.
[15]
Kovitya P. Theoretical determination of material functions of plasmas formed from ablated PTFE, alumina, PVC and Perspex for the temperature range of 5000 to 30, 000 K[C]. Technical Memo No.3, CSIRO Division of Applied Physics, Sydney, Australia, 1982.