全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑器壁侵蚀影响的低压断路器电弧运动特性仿真及实验

, PP. 74-81

Keywords: 空气电弧等离子体,磁流体动力学,器壁侵蚀,产气材料

Full-Text   Cite this paper   Add to My Lib

Abstract:

以磁流体动力学(MHD)为基础建立了考虑器壁侵蚀影响的低压断路器中的电弧的数学模型。在传统的质量、动量和能量守恒方程的基础上增加了器壁材料的浓度方程,考虑了器壁材料的烧蚀对气体的热动力学特性和传输系数的影响,并且采用“视角因数法”计算到达器壁的辐射能量。利用基于有限容积法的商业软件对上述模型进行求解,得出灭弧室内温度场、浓度场、气流场的分布情况以及电压随时间的变化过程。仿真结果表明,由于灭弧室内“漩涡”的存在使得电弧后方的聚合物蒸气浓度大于电弧前方的聚合物蒸气浓度;由于产气材料的影响,电弧的最大电压增加了19.2%;产气材料对电弧运动有加速作用,由于产气材料的影响,电弧的平均运动速度增加了20.1%。实验结果验证了仿真模型的合理性。

References

[1]  McBride J W, Pechrach K, Weaver P M. Arc root commutation from moving contacts in low voltage devices[J]. IEEE Transactions on Components, Packa- ging and Manufacturing Technology, 2001, 24(3): 331-336.
[2]  Doméjean E, Chévrier P, Fiévet C, et al. Arc-wall interaction modeling in a low-voltage circuit breaker[J]. J. Phys.D: Appl.Phys., 1997, 30(4): 2132-2142.
[3]  Patankar S V. Numerical heat transfer and fluid flow[M]. New York: McGraw-Hill, 1980.
[4]  Swierczynski B, Gonzalez J J, Teulet P, et al. Advances in low-voltage circuit breaker modeling[J]. J.Phys.D: Appl.Phys., 2004, 37(4): 595-609.
[5]  Zhang Jinling, Yan Jiudun, Michael T C Fang. Electrode evaporation and its effects on thermal arc behavior[J]. IEEE Transactions on Plasma Science, 2004, 32(3): 1352-1361.
[6]  杨茜, 荣命哲, 吴翊. 低压断路器中空气电弧运动的仿真及实验研究[J]. 中国电机工程学报, 2006, 26(15): 89-94.
[7]  Gleizes A, Gonzalez J J, Freton P. Thermal plasma modeling[J]. Journal of Physics D: Applied Physics, 2005, 38(1): 153-183.
[8]  Shea J J. The influence of arc chamber wall material on arc gap dielectric recovery voltage[J]. IEEE Transactions on Components, Packaging and Manu- facturing Technology, 2001, 24(3): 342-348.
[9]  McBride J W, Pechrach K, Weaver P M. Arc motion and gas flow in current limiting circuit breakers operating with a low contact switching velocity[J]. IEEE Transactions on Components, Packaging and Manufacturing Technology, 2002, 25(3): 427-433.
[10]  Gonzalez J J, Gleizes A. Mathematical modeling of a free-burning arc in the presence of metal vapor[J]. J.Appl.Phys., 1993, 74(5): 3065-3070.
[11]  Hsu K C, Etemadi K, Pfender E. Study of the free-burning high-intensity argon arc[J]. J.Appl.Phys., 1983, 54(3): 1293-1301.
[12]  Yang Qian, Rong Mingzhe, Anthony B Murphy, et al. The influence of magnetic field, chamber geometry and polymer vapour on low-voltage circuit breaker arcs[C]. IEICE Technical Report EMD, 2005: 80.
[13]  吴翊, 荣命哲, 杨茜, 等. 低压空气电弧动态仿真及分析[J]. 中国电机工程学报, 2005, 25(21): 143-148.
[14]  Lago F, Gonzalez J J, Fretont P Gleizes A, et al. A numerical modeling of an electric arc and its interaction with the anode: Part I. The two- dimensional model[J]. J.Phys.D: Appl.Phys., 2004, 37(4): 883-897.
[15]  Kovitya P. Theoretical determination of material functions of plasmas formed from ablated PTFE, alumina, PVC and Perspex for the temperature range of 5000 to 30, 000 K[C]. Technical Memo No.3, CSIRO Division of Applied Physics, Sydney, Australia, 1982.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133