全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

直流微网研究中的关键技术

, PP. 98-106

Keywords: 直流微网,分布式电源,保护,结网方式,双母线

Full-Text   Cite this paper   Add to My Lib

Abstract:

直流微网作为连接分布式电源与主网的一种微网形式,能高效地发挥分布式电源的价值与效益,具备比交流微网更灵活的重构能力。但由于直流电灭弧困难,直流微网系统的设计缺乏统一的标准与规范,直流微网的大规模推广应用将是一个长期过程。本文根据现有文献资料对直流微网研究中的控制技术、保护技术、结网方式、通信技术和电力电子接口电路等关键技术的现状做一个全面的阐述;最后,结合我国的电网国情,就直流微网在城市居民小区内的推广应用提出建议方案。

References

[1]  Kakigano H, Miura Y, Ise T, et al. Fundamental characteristics of DC micro-grid for residential houses with cogeneration system in each house[C]. 2008 IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical Energy in the 21st Century, Pittsburgh, PA, USA, 2008: 1-8.
[2]  赵上林, 吴在军, 胡敏强, 等. 关于分布式发电保护与微网保护的思考[J]. 电力系统自动化, 2010, 34(1): 73-77.
[3]  Zhao Shanglin, Wu Zaijun, Hu Minqiang, et al. Thought about protection of distributed generation and microgrid[J]. Automation of Electric Power Systems, 2010, 34(1): 73-77.
[4]  王成山, 杨占刚, 王守相, 等. 微网实验系统结构特征及控制模式分析[J]. 电力系统自动化, 2010, 34(1): 99-105.
[5]  Wang Chenshan, Yang Zhangang, Wang Shouxiang, et al. Analysis of structural char acteristics and control approaches of experimental microgrid systems[J]. Automation of Electric Power Systems, 2010, 34(1): 99-105.
[6]  Marnay C, Robio F J, Siddiqui A S. Shape of the micro-grid[C]. IEEE Power Engineering Society Winter Meeting, Columbus, OH, USA, 2001, 1: 150-153.
[7]  Barnes M, Ventakaramanan G, Kondoh J, et al. Real- world micro-grids-an overview[C]. IEEE International Conference on System of Systems Engineering, San Antonio, TX, USA, 2007: 1-8.
[8]  Fred C Lee. Sustainable Buildings and Nanogrids[EB/ OL]. http://www.cpes.vt.edu/publications/proceedings/ conference/2010/index.php, 2010.
[9]  Mark Mc Granaghan, Thomas Ortmeyer, David Crudele, et al. Renewable systems interconnection study: advanced grid planning and operations[R]. Sandia National Laboratories, 2008.
[10]  朱雄世. 国外数据通信设备高压直流供电新系统(下)[J]. 邮电设计技术, 2009(5): 66-70.
[11]  Zhu Xiongshi. New high voltage direct current power supply system for data communication equipment abroad (part two)[J]. Designing Techniques of Postes and Telecommunication, 2009(5): 66-70.
[12]  My Ton, Brian Fortenbery. DC Power for Improved Data Center Efficiency [R/OL]. http://hightech. lbl.gov/dc-powering/, 2008.
[13]  Ciezki J G, Ashton R W. Selection and stability issues associated with a navy shipboard DC zonal electric distribution system[J]. IEEE Transactions on Power Delivery, 2000, 15(2): 665-669.
[14]  Chun Lien Su, Chun Teng Yeh. Probabilistic security analysis of shipboard DC zonal electrical distribution systems[C]. IEEE Power and Energy Society General Meeting, 2008:1-7.
[15]  Emadi K, Ehsani M. Aircraft power systems: technology, state of the art, and future trends[J]. IEEE Aerospace and Electronic Systems Magazine, 2000, 15(1): 28-32.
[16]  Miller J M, Emadi A, Rajarathnam A V, et al. Current status and future trends in more electric car power systems[C]. IEEE Vehicular Technology Conference, Houston, TX, USA, 1999, 2: 1380-1384.
[17]  黄逊青. 直流家用电器时代即将来临[J]. 电器, 2009(3): 62-63.
[18]  刘衡. 直流家电和家用集成能源系统技术开发项目启动[J]. 家电科技, 2009(16): 8.
[19]  REbusTM DC Microgrid: Technical Overview [EB/ OL]. http://rebuspower.com/technical.shtml, 2010.
[20]  El-Samahy I, El-Saadny E. The effect of DG on power quality in a deregulated environment[C]. IEEE Power Engineering Society General Meeting, San Francisco, TX, USA, 2005, 3: 2969-2976.
[21]  Khatri P R, Jape V S, Lokhande N M, et al. Improving power quality by distributed generation[C]. Power Engineering Conference, IPEC’05, Singapore, 2005, 2: 675-678.
[22]  Youichi Ito, Yang Zhongqing, Hirofmi Akagi. DC micro-grid based distribution power generation system[C]. Power Electronics and Motion Control Conference, IPEMC’04, 2004, 3: 1740-1745.
[23]  Kim J W, Choi H S, Cho B H. A novel droop method for the converter parallel operation[C]. 16th Annual IEEE Applied Power Electronics Conference and Exposition, 2001, 2: 959-964.
[24]  Karlsson P, Svensson J. DC bus voltage control for a distributed power system[J]. IEEE Transactions on Power Electronics, 2003, 18(6): 1405-1412.
[25]  Kyohei Kurohane, Tomonobu Senjyu, Atsushi Yona, et al. A high quality power supply system with DC smart grid[C]. 2010 IEEE PES Transmission and Distribution Conference and Exposition: Smart Solutions for a Changing World, New Orleans, LA, USA, 2010:1-6.
[26]  Guerrero J M, Vásquez J C, Matas J, et al. Hierarchical control of droop-controlled DC and AC micro-grids-a general approach toward standardization[J]. IEEE Transaction on Industrial Electronics, 2011, 58(1): 158-172.
[27]  Dushan Boroyevich, Igor Cvetković, Dong Dong, et al. Future electronic power distribution systems-a contemplative view[C]. The 12th International Conference on Optimization of Electrical and Electronic Equipment, Basov, Russia, 2010: 1369-1380.
[28]  Schönberger J, Duke R, Simon D Ro. DC-bus signaling: a distributed control strategy for a hybrid renewable nanogrid[J]. IEEE Transactions on Industrial Electronics, 2006, 53(5): 1453-1460.
[29]  Cuzner R M, Venkataramanan G. The status of DC micro-grid protection[C]. IEEE Industry Applications Society Annual Meeting, Edmonton, Alberta, Canada, 2008:1-8.
[30]  Baran M, Mahajan N R. PEBB based DC system protection: opportunities and challenges[C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, PES TD 2005/2006, Dallas, TX, USA, 2006: 705-707.
[31]  Meyer C, Kowal M, De Doncker R W. Circuit breaker concepts for future high-power DC-applications[C]. IEEE Industry Applications Conference, 40th IAS Annual Meeting, Hong Kong, 2005, 2: 860-866.
[32]  Peter V G, Ferreira J A. Zero volt switching hybrid DC circuit breakers[C]. 35th IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy, Rome, Italy, 2000, 5: 2923-2927.
[33]  ABB circuit breakers for direct current applica- tions[EB/OL]. http://www05.abb.com/global/scot/ scot260.nsf/veritydisplay/de4ebee4798b6724852576be007b74d4/$File/1SXU210206G0201.pdf, 2007.
[34]  Shimizu T, Jin Y, Kimura G. DC ripple current reduction on a single-phase PWM voltage-source rectifier[J]. IEEE Transactions on Industry Applications, 2000, 36(5): 1419-1428.
[35]  Ruxi Wang, Fred Wang, Dushan Boroyevich, et al. A high power density single phase PWM rectifier with active ripple energy storage[C]. The 25th Annual IEEE Applied Power Electronics Conference and Exposition, Palm Springs, CA, USA, 2010: 1378-1383.
[36]  Pietro Cairoli, Igor Kondratiev, Roger Dougal. Ground fault protection for DC bus using controlled power sequencing[C]. IEEE SoutheastCon 2010 Conference: Energizing Our Future, Charlotte-Concord, NC, USA, 2010: 234-237.
[37]  Paul D. DC traction power system grounding[J]. IEEE Transactions on Industry Applications, 2002, 38(3): 818-824.
[38]  Salomonsson D, Soder L, Sannino A. Protection of low-voltage DC micro-grids[J]. IEEE Transactions on Power Delivery, 2009, 24(3): 1045-1053.
[39]  Mesut E B, Nikhil R M. Overcurrent protection on voltage-source-converter-based multi-terminal DC distribution systems[J]. IEEE Transactions on Power Delivery, 2007, 22(1): 406-412.
[40]  Lianxiang Tang, Boon-Teck Ooi. Locating and isolating DC faults in multi-terminal DC systems[J]. IEEE Transactions on Power Delivery, 2007, 22(3): 1877-1884.
[41]  Daniel Salomonsson, Lennart Söder, Ambra Sannino. An adaptive control system for a DC micro-grid for data centers[J]. IEEE Transactions on Industry Applications, 2008, 44(6): 1910-1917.
[42]  Magureanu R, Albu M, Priboianu M, et al. A DC distribution network with alternative sources[C]. 2007 Mediterranean Conference on Control and Automation, MED’07, Athens, Greece, July 2007.
[43]  Hiroaki Kakigano, Yushi Miura, Toshifumi Ise, et al. DC micro-grid for super high quality distribution- system configuration and control of distributed generations and energy storage devices[C]. The 37th IEEE Power Electronics Specialists Conference, Jeju, Korea, Republic of, 2006:1-6.
[44]  Guy AlLee. DC—an idea whose time has come and gone?[EB/OL]. http://blogs.intel.com/research/2010/ 05/dc_-_an_idea_whose_time_has_co.php, 2010.
[45]  丁明, 张颖媛, 茆美琴. 微网研究中的关键技术[J]. 电网技术, 2009, 33(11): 6-11.
[46]  Ding Ming, Zhang Yinyuan, Mao Meiqin. Key technologies for microgrids being researched[J]. Power System Technology, 2009, 33(11): 6-11.
[47]  Kroposki B, Lasseter R, Ise T, et al. Making micro-grids work[J]. IEEE Power and Energy Magazine, 2008, 6(3): 40-53.
[48]  Katiraei F, Iravani R, Hatziargyriou N, et al. Micro-grids management[J]. IEEE Power and Energy Magazine, 2008, 6(3): 54-65.
[49]  Kakigano H, Miura Y, Ise T, et al. DC voltage control of the DC micro-grid for super high quality distribution[C]. The 4th Power Conversion Conference, Nagoya, Japan, 2007: 518-525.
[50]  Biczel P. Power electronic converters in DC micro-grid[C]. The 5th International Conference- Workshop Compatibility in Power Electronics, CPE’07, Gdansk, Poland, May/Jun. 2007: 1-6.
[51]  Daniel Salomonsson, Ambra Sannino. Centralized AC/DC power conversion for electronic loads in a low-voltage DC power system[C]. The 37th IEEE Power Electronics Specialists Conference, PESC’06. Jeju, Korea, Republic of, June 2006: 1-7.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133