全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

基于Radau排列的非线性模型预测紧急电压控制器设计

, PP. 243-249

Keywords: 长期电压稳定,准稳态近似,非线性模型预测控制,滚动动态优化,Radau排列,非线性规划

Full-Text   Cite this paper   Add to My Lib

Abstract:

将非线性模型预测控制方法应用于紧急电压控制器的设计,并以准稳态近似为基础建立滚动动态优化模型,该模型旨在协调各种电压控制手段,从而维持系统的长期电压稳定性。滚动动态优化问题的目标函数综合考虑了电压偏移和控制成本,等式约束包括了连续-离散时间微分-代数方程组。为提高求解滚动动态优化模型的效率,采用Radau排列法将该模型转化为非线性规划问题,并采用内点法解法器IPOPT求解该问题。在新英格兰10机39节点系统上的计算结果验证了所提方法的有效性。

References

[1]  Popovic D H, Hill D J, Wu Q. Optimal voltage security control of power systems[J]. Electrical Power and Energy Systems, 2002, 24: 305-320.
[2]  Mats Larsson, Daniel Karlsson. Coordinated system protection scheme against voltage collapse using heuristic search and predictive control[J]. IEEE Transactions on Power Systems, 2003, 18(3): 1001-1006.
[3]  Wen J Y, Wu Q H, Turner D R, et al. Optimal coordinated voltage control for power system voltage stability[J]. IEEE Transactions on Power Systems, 2004, 19(2): 1115-1122.
[4]  Zima M, Andersson G. Model predictive control employing trajectory sensitivities for power systems applications[C]. Proceedings of the 44th IEEE Conference on Decision and Control, Seville, Spain, December 12-15, 2005: 4452-4456.
[5]  Hiskens I A, Gong B. MPC-based load shedding for voltage stability enhancement[C]. Proceedings of the 44th IEEE Conference on Decision and Control, and the European Control Conference Seville, Spain, December 12-15, 2005: 4463-4468.
[6]  Rawlings J. Tutorial overview of model predictive control[J]. IEEE Control Systems Magazine, 2000, 20(3): 38-52.
[7]  丁宝苍. 预测控制的理论与方法[M]. 北京: 机械工业出版社, 2008.
[8]  钱积新, 赵均, 徐祖华. 预测控制[M]. 北京: 化学工业出版社, 2007.
[9]  Cutsem T V, Vournas C. Voltage stability of electric power systems[M]. Norwell, MA: Kluwer Academic Publishers, 1998: 318-320.
[10]  周双喜, 朱凌志, 郭锡玖, 等. 电力系统电压稳定性及其控制[M]. 北京: 中国电力出版社, 2003.
[11]  Biegler L T. Retrospective on optimization[J]. Computers and Chemical Engineering, 2004, 28: 1169-1192.
[12]  Biegler L T, Cervantes A M, Wachter A. Advances in simultaneous strategies for dynamic process optimization[J]. Chemical Engineering Science, 2002, 57: 575-593.
[13]  Biegler L T. An overview of simultaneous strategies for dynamic optimization[J]. Chemical Engineering and Processing: Process Intensification, 2007, 46(11): 1043-1053.
[14]  Fourer R, Gay D M, Kernighan B W. AMPL: A modeling language for mathematical programming[M]. 2nd ed. Belmont, CA: Thomson Brooks Cole, 2003.
[15]  Wächter A, Biegler L T. On the implementation of primal-dural interior point filter line search algorithm for large-scale nonlinear programming[J]. Mathematical Programming, 2006, 106(1): 25-27.
[16]  Hairer E, Nørsett S P, Wanner G. Solving ordinary differential equations Ⅱ: stiff and differential- algebraic problems[M]. 北京: 科学出版社, 2006.
[17]  Ascher U M, Petzold L R. Computing methods for ordinary differential equations and differential- algebraic equations[M]. SIAM, Philadelphia, PA, 1998: 270-276.
[18]  胡泊, 刘明波. 最优协调电压控制拉道排列算法[J]. 中国电机工程学报, 2009, 29(34): 22-29.
[19]  Hu Bo, Liu Mingbo. Indirect Radau collocation algorithm applied to optimal coordinated voltage control[J]. Proceedings of the CSEE, 2009, 29(34): 22-29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133