全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

考虑竞价风险的多目标优化发电研究

, PP. 210-216

Keywords: 电力市场,竞价风险,机组出力,多目标优化

Full-Text   Cite this paper   Add to My Lib

Abstract:

基于交易日市场电价预测曲线,采用概率统计方法对竞价风险进行评估,并在发电成本中纳入有害气体排放控制成本,以竞价风险最低化和全天发电期望利润最大化为目标,构建可体现机组出力与市场电价之间协调联动关系的机组交易日分时段出力多目标优化模型;通过将非劣排序操作与微分进化算法有机融合及改进以克服进化早熟和搜索不均匀等问题,设计出一种新型多目标微分进化算法对模型进行求解,并采用模糊集理论提取总体最优解。最后通过算例仿真,验证了本文方法能有效降低发电商对竞价风险的敏感性,可实现低风险、高收益的竞价上网。

References

[1]  Bajpai P, Singh S N. Fuzzy adaptive particle swarm optimization for bidding strategy in uniform price spot market[J]. IEEE Transactions on Power Systems, 2007, 22(4): 2152-2160.
[2]  喻洁, 黄学良, 夏安邦. 基于分区协调优化的环境经济调度策略[J]. 电工技术学报, 2010, 25(1): 129-136.
[3]  Abido M A. Environmental/economic power dispatch using multiobjective evolutionary algorithms[J]. IEEE Transactions on Power Systems, 2003, 18 (4): 1529-1537.
[4]  刘自发, 张建华. 一种求解电力经济负荷分配问题的改进微分进化算法[J]. 中国电机工程学报, 2008, 28(10): 100-105.
[5]  Wang L, Singh C. Stochastic economic emission load dispatch through a modified particle swarm optimization algorithm[J]. Electric Power Systems Research, 2008, 78(8):1466-1476.
[6]  彭春华. 综合环境保护及竞价风险的发电侧经济运行[J]. 中国电机工程学报, 2008, 28(28):97-102.
[7]  Zitzler E, Thiele L Nov. Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach[J]. IEEE Transactions on Evolutionary Computation, 1999, 3(4): 257-271.
[8]  Deb K, Pratap A, Agarwal S, et al. A fast and elitist multi-objective genetic algorithm: NSGA-Ⅱ[J]. IEEE Transactions on Evolutionary Computation, 2002, 6 (2): 182-197.
[9]  Leticia C, Susana E, Carlos A. A particle swarm optimizer for multi-objective optimization[J]. Journal of Computer Science and Technology, 2005, 5 (4): 204-210.
[10]  Chan T M, Man K F, Tang K S. et al. A jumping gene paradigm for evolutionary multiobjective optimization[J]. IEEE Transactions on Evolutionary Computation, 2008, 12 (2): 143-159.
[11]  张显, 王锡凡. 短期电价预测综述[J]. 电力系统自动化, 2006, 30(3):92-100.
[12]  Zhang Xian, Wang Xifan. Review of the short-term electricity price forecasting[J]. Automation of Electric Power Systems, 2006, 30(3): 92-100.
[13]  Peng C, Sun H, Guo J. Multi-objective optimal PMU placement using a non-dominated sorting differential evolution algorithm[J]. International Journal of Electrical Power & Energy Systems, 2010, 32(8): 886-892.
[14]  Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous space[J]. Global Optimization, 1997, 11(4):341-359.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133