全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

一种基于离散小波变换的谐波分析方法

, PP. 252-259

Keywords: 谐波分析,小波变换,频率调制,加窗插值FFT

Full-Text   Cite this paper   Add to My Lib

Abstract:

在离散小波变换的基础上,结合加窗插值FFT,提出了一种组合式谐波分析算法。该算法先用加窗插值FFT计算基波频率,然后对加窗信号进行频率调制,将谐波分量变换成直流或近似直流分量。用离散小波变换分离出这些分量后用于计算谐波幅值和相位。计算机仿真和实验结果表明,该算法可在高噪声污染情况下,准确计算谐波参数,尤其谐波相位角。DSP评估板上的实现证明了该算法可用于实时谐波分析。

References

[1]  Harri F J. On the use of windows for harmonic analysis with the discrete Fourier transform[J]. Proceedings of IEEE, 1978, 66: 51-83.
[2]  Nuttall A H. Some windows with very good side lobe behavior[J]. IEEE Transaction on Acoustic Speech, Signal Process, 1981, 29(1): 84-91.
[3]  潘文, 钱俞寿, 周鹗. 基于加窗插值FFT的电力谐波测量理论(I)—窗函数研究[J]. 电工技术学报, 1994, 9(1): 50-54.
[4]  潘文, 钱俞寿, 周鹗. 基于加窗插值FFT 的电力谐波测量理论 (II)—双插值FFT 理论[J]. 电工技术学报, 1994, 9(2): 53-56.
[5]  Pan Wen, Qian Yushou, Zhou E. Power system harmonic measurement based on windows and interpolated FFT(II) — dual interpolated FFT algorithms[J]. Transactions of China Electrotechnical Society, 1994, 9(2): 53-56.
[6]  Zhang Fusheng, Geng Zhongxing, Yuan Wei. The algorithm of interpolating windowed FFT for harmonic analysis of electric power system[J]. IEEE Transaction on Power Delivery, 2001, 16(2): 160-164.
[7]  Wen He, Teng Zhaosheng, Qing Baiyuan. Hanning Self-convolution windows and its application to harmonic analysis[J]. Transactions of China Electrotechnical Society, 2009, 24(2): 164-169.
[8]  Zeng Bo, Teng Zhaosheng, Wen He, et al. An Approach for harmonic analysis based on Rife-Vincent window interpolation FFT[J]. Proceedings of the CSEE, 2009, 29(10): 115-120.
[9]  高云鹏, 滕召胜, 温和, 等. 凯塞窗插值FFT的电力谐波分析与应用[J]. 中国电机工程学报, 2010, 30(4): 43-48.
[10]  Gao Yunpeng, Teng Zhaosheng, Wen He, et al. Harmonic analysis based on Kaiser window interpolation FFT and its application[J]. Proceedings of the CSEE, 2010, 30(4): 43-48.
[11]  Pham V L, Wong K P. Wavelet-transform-based algorithm for harmonic analysis of power system waveforms[J]. IEE Proceedings-Generation, Transmission and Distribution, 1999, 146(3): 249-254.
[12]  Eren L, Devaney M J. Calculation of power system harmonics via wavelet packet decomposition in real time metering[C]. IEEE Instrumentation and Measurement Technology Conference, Anchorage, AK, 2002: 1643-1647.
[13]  Julio Barros, Ramon I Diego. Analysis of harmonics in power systems using the wavelet-packet[J]. IEEE Transaction on Instrument and Measurement, 2008, 57(1): 63-69.
[14]  Jiao Xintao, Ding Kang. Resetting moduli and solutions in windowing spectrum analysis[J]. Journal of Shantou University (Natural Science Edition), 2003, 18(3): 26-30, 38.
[15]  IEEE Std—519—1992. Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems[S]. IEEE, New York, USA, 1992.
[16]  Jeefzngs D I, Linders J R. Unique aspects of distribution system harmonics due to high impedance ground faults[J]. IEEE Transactions on Power Delivery, 1990, 5(2): 1086-1094.
[17]  David C Yu, Shoukat H Khan. An adaptive high and low impedance fault detection method[J]. IEEE Transactions on Power Delivery, 1994, 9(4): 1812-1821.
[18]  Carl L Benner, B Don Russell. Practical high impedance fault detection on distribution feeders[J]. IEEE Transactions on Industry Applications, 1997, 33(3): 635-640.
[19]  Grandke T. Interpolation algorithms for discrete Fourier transform of weighted signals[J]. IEEE Transactions on Instrumentation and Measurement, 1983, 32(2): 350-355.
[20]  Rife D C, Vincent G A. Use of the discrete Fourier transform in the measurement of frequencies and levels of tones[J]. The Bell System Technical Journal, 1970, 49(2): 197-228.
[21]  Pan Wen, Qian Yushou, Zhou E. Power harmonics measurement based on windows and interpolated FFT(I)—study of windows[J]. Transactions of China Electrotechnical Society, 1994, 9(1): 50-54.
[22]  吴静, 赵伟. 一种用于分析电网谐波的多谱线插值算法[J]. 中国电机工程学报, 2006, 26(8): 55-59.
[23]  Wu Jing, Zhao Wei. An algorithm of MICA for analyzing harmonics in power system[J]. Proceedings of the CSEE, 2006, 26(8): 55-59.
[24]  律方成, 徐志钮, 李和明. 结合粗调和细调的电力系统谐波分析算法[J]. 电工技术学报, 2007, 22(6): 114-120.
[25]  Lü Fangcheng, Xu Zhiniu, Li Heming. An algorithm with coarse adjustment and fine adjustment for power system harmonics analysis[J]. Transactions of China Electrotechnical Society, 2007, 22(6): 114-120.
[26]  温和, 滕召胜, 卿柏元. Hanning自卷积窗及其在谐波分析中的应用[J]. 电工技术学报, 2009, 24(2): 164-169.
[27]  曾博, 滕召胜, 温和, 等. 莱夫-文森特窗插值FFT 谐波分析方法[J]. 中国电机工程学报, 2009, 29(10): 115-120.
[28]  Sidney Burrus C, Ramesh A Gopnath, Haitao Guo. Introduction to wavelets and wavelet transforms: a primer[M]. United States: Prentice Hall, 1997.
[29]  Paulo F Ribeiro. Time-varying waveform distortions in power systems[M]. United States: Wiley-IEEE Press, 2009.
[30]  Vatansever F, Ozdemir A. A new approach for measuring RMS value and phase angle of fundamental harmonic based on wavelet packet transform[J]. Electric Power System Research, 2008, 78: 74-79.
[31]  Pedro M Ramos, A Cruz Serra. Comparison of frequency estimation algorithms for power quality assessment[J]. Measurement, 2009, 42: 1312-1317.
[32]  焦新涛, 丁康. 加窗频谱分析的恢复系数及其求法[J]. 汕头大学学报(自然科学版), 2003, 18(3): 26-30, 38.
[33]  The Institute of Electrical and Electronics Engineers. IEEE Std. 1159—1995 IEEE recommended practice for monitoring electric power quality[S]. New York, 1995.
[34]  GB/T15945电能质量: 电力系统频率允许偏差[S].

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133