全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

求解暂态稳定约束最优潮流的混合算法

, PP. 229-237

Keywords: 最优潮流,暂态稳定,单机无穷大母线等值,预测-校正,轨迹灵敏度,微分进化

Full-Text   Cite this paper   Add to My Lib

Abstract:

借助单机无穷大母线等值建立严格稳定判据,将轨迹灵敏度和微分进化技术结合起来求解暂态稳定约束最优潮流问题。以临界稳定功角作为暂态稳定约束功角阈值,并用预测失稳时刻修正功角阈值,提高了功角阈值的准确性和优化精度。按照单机无穷大母线等值,将故障分为稳定故障、极度稳定故障、一般不稳定故障和极度不稳定故障,将极度稳定故障从暂态稳定约束中剔除,省略相应灵敏度计算。为充分发挥改进轨迹灵敏度法的快速收敛特性和微分进化算法较强的全局搜索能力,提出将两者适当结合构造求解多故障暂态稳定约束最优潮流问题的混合算法。所提微分进化种群规模和计算量大大减小;含不稳定故障规格化稳定度的评价函数值更能综合反映种子的安全经济指标。在3机和10机试验系统上验证了所提算法的高效性和实用性。

References

[1]  Liu Mingbo, Yang Zeng. Optimal power flow calculation with transient energy margin constraints under multi-contigency conditions[J]. Proceedings of the CSEE, 2007, 27(34): 12-18.
[2]  Tony B Nguyen, M A Pai. Dynamic security- constrained rescheduling of power systems using trajectory sensitivities[J]. IEEE Transactions on Power Systems, 2003, 18(2): 848-854.
[3]  李贻凯, 刘明波. 多故障暂态稳定约束最优潮流的轨迹灵敏度法[J]. 中国电机工程学报, 2009, 29(16): 42-48.
[4]  Li Yikai, Liu Mingbo. Trajectory sensitivity method for transient stability constrained optimal power flow under multi-contingency condition[J]. Proceedings of the CSEE, 2009, 29(16): 42-48.
[5]  I A Hiskens, M A Pai. Trajectory sensitivity analysis of hybrid systems[J]. IEEE Transactions on Circuits and Systems-I: Fundamental Theory and Applications, 2000, 47(2): 204-220.
[6]  Y Xue, Th Van Cutsem, M Ribbens-Pavella. Extended equal area criterion justification, generalizations, applications[J]. IEEE Transactions on Power Systems, 1989, 4(1): 44-52.
[7]  Y Xue, L Wehenkel, et al. Extended equal area criterion revised[J]. IEEE Transactions on Power Systems, 1992, 7(3): 1012-1022.
[8]  Rafael Zarate-Minano, Thierry Van Cutsem, et al. Securing transient stability using time-domain simulations within an optimal power flow[J]. IEEE Transactions on Power Systems, 2010, 25(1): 243-253.
[9]  Alejandro Pizano-Martinez, Claudio R Fuerte- Esquivel, et al. Global transient stability-constrained optimal power flow using an OMIB reference trajectory[J]. IEEE Transactions on Power Systems, 2010, 25(1): 392-403.
[10]  R Storn, K Price. Differential evolution-a simple and efficient adaptive scheme for global optimization over continuous spaces[R]. International Computer Science Institute, Berkeley, CA, 1995.
[11]  H R Cai, C Y Chung, K P Wong. Application of differential evolution algorithm for transient stability constrained optimal power flow[J]. IEEE Transactions on Power Systems, 2008, 23(2): 719-728.
[12]  Y Xue, M Pavella. Critical cluster identification in transient stability studies[C]. IEE Proceedings, Part C, 1993, 140(6): 481-489.
[13]  Y Xue. The gap criterion: a tool for selecting good candidate critical clusters. Private communication, 1993.
[14]  何仰赞, 温增银. 电力系统分析(下册)[M]. 武汉: 华中科技大学出版社, 2002.
[15]  Vittal V, Zhou E Z, Hwang C, et al. Derivation of stability limits using analytical sensitivity of the transient energy margin[J]. IEEE Transactions on Power System, 1989, 4(4): 1363-1372.
[16]  K N Shubhanga, A M Kulkarni. Stability-constrained generation rescheduling using energy margin sensitivities[J]. IEEE Transactions on Power Systems, 2004, 19(3): 1402-1413.
[17]  刘明波, 阳曾. 含暂态能量裕度约束多故障最优潮流计算[J]. 中国电机工程学报, 2007, 27(34): 12-18.
[18]  Shubhanga K N, Kulkarni A M. Determination of effectiveness of transient stability controls using reduced number of trajectory sensitivity computations [J]. IEEE Transactions on Power Systems, 2004, 19(1): 473-482.
[19]  Fang Dazhong, Yang Xiaodong, Sun Jingqiang, et al. An optimal generation rescheduling approach for transient stability enhancement [J]. IEEE Transactions on Power Systems, 2007, 22(1): 386-394.
[20]  刘明波, 李妍红, 陈家荣. 基于轨迹灵敏度的暂态稳定约束最优潮流计算[J]. 电力系统及其自动化学报, 2007, 19(6): 24-29.
[21]  Liu Mingbo, Li Yanhong, Chan K W. Transient stability constrained optimal power flow using trajectory sensitivities[J]. Proceedings of the CSU-EPSA, 2007, 19(6): 24-29.
[22]  Laufenberg M J, Pai M A. A new approach to dynamic security assessment using trajectory sensitivities[J]. IEEE Transactions on Power Systems, 1998, 13(3): 953-958.
[23]  Y Zhang, P Rousseaux, L Wehenkel, et al. SIME: A comprehensive approach to fast transient stability assessment[C]. Proceedings of lEE-Japan, Power and Energy'96, Osaka, Japan, 1996: 1177-182.
[24]  Y Zhang, L Wehenkel, P Rousseaux, et al. Transient stability transfer limits of a longitudinal system using the SIME method[C]. Proceedings of MELECON, Bari, Italy, 1996, 809-815.
[25]  Y Zhang, L Wehenkel, P Rousseaux, et al. SIME: A hybrid approach to fast transient stability assessment and contingency selection[J]. Electrical Power & Energy Systems, 1997, 19(3): 195-208.
[26]  Zimmeraman R D, Gan D. MATPOWER: A MATLAB power system simulation package[CP/OL]. 2005-02-14. http://www. pserc.cornell.edu/matpower
[27]  Graham R, Joe C. Power system transients: A Matlab power system simulation package[CP/OL]. 1997- 08-18. www.eagle.ca/~cherry /pst.htm

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133