IEC 60480—2004. Guidelines for the checking and treatment of sulfur hexafluoride(SF6) taken from electrical equipment and specification for its re-use[S]. 2004.
M Piemontesi, L Niemeyer. Surface reactions of SF6 decomposition products[C]. Conference on Electrical Insulation and Dielectric Phenomena, Millbrae, 1996: 585-593.
[4]
Semen Mchernin. Promising version of the three- objective multi pass matrix system[J]. Optics Express, 2002, 10(2): 104-107.
[5]
Betty Lise Anderson, Victor Argueta Diaz. Optical cross connect switch based on Tip/Tilt micromirrors in a white cell[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2003, 9(2): 579-593.
[6]
M piemontesi R Pietsch, W Zaengl. Analysis of decomposition products of sulfur hexafluoride in negative dc corona with special emphasis on content of H2O and O2[C]. Conference Record of the 1994 IEEE International Symposium on Electrical Insulation, PA, USA, 1994: 499-503.
[7]
Braun J M, F Y Chu, Seethapathy R. Characterization of GIS spacers exposed to SF6 decomposition products[J]. IEEE Transactions on Electrical Insulation, 1987, 22(2): 187-193.
[8]
Sauers I, Ellis H W, Christophorou L G. Neutral decomposition products in spark breakdown of SF6[J]. IEEE Transactions on Electrical Insulation, 1986, 21(2): 111-119.
[9]
Herron J T. S2F10 formation in computer simulation studies of the breakdown of SF6[J]. IEEE Transactions on Electrical Insulation, 1987, 22(4): 523-525.
[10]
Sauers I. Sensitive detection of by-products formed in electrically discharged sulfur hexafluoride[J]. IEEE Transactions on Electrical Insulation, 1986, 21(2): 105-110.
Zhang Xiaoxing, Yao Yao, Tang Ju, et al. Actuamity and perspective of proximate analysis of SF6 decomposed products under partial discharge[J]. High Voltage Engineering, 2008, 34(4): 664-669.
[14]
Chu F Y. SF6 Decomposition in gas-insulated equipment[J]. IEEE Transactions on Electrical Insulation, 1986, 21(5): 693-725.
[15]
Zhang Xiaoxing, Ren Jiangbo, Xiao Peng, et al. Multi-wall Carbon Nanotube films sensor applied to SF6 PD detection[J]. Proceedings of the CSEE, 2009, 29(16): 114-118.
[16]
John U White. Long optical paths of large aperture[J]. Journal of the Optical Society America, 1942, 32(5): 285-288.
[17]
Briesmeister R A. Long path length temperature- controlled absorption cell for spectroscopic studies of radioactive compounds[J]. Applied Spectroscopy, 1984, 8(1): 35-38.
[18]
Rashmi Mital, Carllyn M Warnky, Betty Lise Anderson. Design and demonstration of an optical true-time-delay device based on an octic-style white cell[J]. Journal of Lightwave Technology, 2006, 24(2): 982-990.
[19]
Carllyn M Warnky, Rashmi Mital, Betty Lise Anderson. Demonstration of a quartic cell, a free-space true-time-delay device based on the white cell[J]. Journal of Leighwave Technology, 2006, 24(10): 3849-3855.
[20]
Kurte R, heise H M, Klockow D. Quantitative infrared spectroscopic analysis of SF6 decomposition products obtained by electrical partial discharges and sparks using PLS-calibrations[J]. Journal of Molecular Structure, 2001, 565: 505-513.
[21]
Kurte R, Beyer C H, Heise M. Application of infrared spectroscopy to monitoring gas insulated high-voltage equipment: electrode material-dependent SF6 decomposition[J]. Analytical and Bioanalytical Chemistry, 2003, 373(7): 639-646.
Tang Ju, Li Tao, Zhang Xiaoxing, et al. Device of dissociation apparatus under partial discharge and gaseous decomposition components analysis system[J]. High Voltage Enginerring, 2008, 34(8): 1583-1588.