全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...

发电机组污染排放约束下电量互换合作博弈优化模型

, PP. 245-251

Keywords: 发电污染,经济调度,合作博弈,利润分配

Full-Text   Cite this paper   Add to My Lib

Abstract:

在排放条件约束下,发电机组生产的目标是生产成本和污染成本的整体成本最小化。一般而言,大机组的生产成本和污染成本都会低于小机组。机组间进行合作的方式是让部分电量从小机组上转移到大机组上,总体成本降低,然后通过利益分配,使得各个机组的利益大于合作前。本文将污染排放惩罚成本引入到传统的发电经济调度模型中,构建了污染排放成本与发电成本最小化下的合同发电量置换优化模型,并采用合作博弈利益分配的Shapley模型对合作后所有机组之间利润进行优化分配。算例结果表明,该模型能够有效地将发电与污染排放成本高的机组发电量转移到成本低的机组上,实现节能减排的目的。

References

[1]  Shang Jincheng. Generation right exchange theory and its applications based on energy-saving and emission-reducing part one generation right exchange theory[J]. Automation of Electric Power Systems, 2009, 33(12): 46-52.
[2]  喻洁, 李扬, 夏安邦. 兼顾环境保护与经济效益的发电调度分布式优化策略[J]. 中国电机工程学报, 2009, 29(16): 63-68.
[3]  Peng Chunhua. Economic operation problem of generating side considering environmental protection and bidding risk[J]. Proceedings of the CSEE, 2008, 28(28): 97-102.
[4]  谭忠富, 李莉, 王建军, 等. 多智能体代理下电力双边谈判中的模糊贝叶斯学习模型[J]. 中国电机工程学报, 2009, 29(7): 106-113.
[5]  Tan Zhongfu, Li Li, Wang Jianjun, et al. A fuzzy bayesian learning model in agent-based electric power bilateral negotiation[J]. Proceedings of the CSEE, 2009, 29(7): 106-113.
[6]  中华人民共和国国务院新闻办公室. 中国的环境保护(1996-2005). www.gov.cn/zwgk/2006-06/05/content_ 300288.htm.
[7]  陈赟, 严正. 考虑节能减排与网络约束的发电权交易模型[J]. 电力系统保护与控制, 2009, 37(12): 52-57.
[8]  徐致远, 罗先觉, 牛涛. 综合考虑电力市场与节能调度的火电机组组合方案[J]. 电力系统自动化, 2009, 33(22): 14-17.
[9]  Xu Zhiyuan, Luo Xianjue, Niu Tao. Thermal unit commitment scheme considering electricity market and energy-saving dispatch[J]. Automation of Electric Power Systems, 2009, 33(22): 14-17.
[10]  Wen Lili, Liu Junyong. Monte Carlo simulation of medium and long-term generation plan in hybrid power system based on environmental/economic dispatch[J]. Power System Protection and Control, 2008, 36(24): 24-29.
[11]  Tan Zhongfu, Chen Guangjuan, Zhao Jianbao, et al. Optimization model for designing peak-valley time-of-use power price of generation side and sale side at the direction of energy conservation dispatch[J]. Proceedings of the CSEE, 2009, 29(1): 55-60.
[12]  Abido M A. Environmental/economic power dispatch using multi-objective evolutionary algorithms[J]. IEEE Transactions on Power Systems, 2003, 18(4): 1529-1536.
[13]  尚金成. 基于节能减排的发电权交易理论及应用(一)发电权交易理论[J]. 电力系统自动化, 2009, 33(12): 46-52.
[14]  Chen Yun, Yan Zheng. Generation rights trade model based on energy-saving, emission-reducing and network constraint[J]. Power System Protection and Control, 2009, 37(12): 52-57.
[15]  温丽丽, 刘俊勇. 混合系统中、长期节能调度发电计划的蒙特卡罗模拟[J]. 电力系统保护与控制, 2008, 36(24): 24-29.
[16]  邹颖. 河北南网发电节能调度优化研究[D]. 保定:华北电力大学(河北), 2007.
[17]  苏鹏, 刘天琪, 赵国波, 等 基于改进粒子群算法的节能调度下多目标负荷最优分配[J]. 电网技术, 2009, 33(5): 48-53.
[18]  Su Peng, Liu Tianqi, Zhao Guobo, et al. An improved particle swarm optimization based multi-objective load dispatch under energy conservation dispatching[J]. Power System Technology, 2009, 33(5): 48-53.
[19]  Li Shujin, Zhang Qiang. A simplified expression of the Shapley function for fuzzy game[J]. European Journal of Operational Research, 2009, 196(1): 234-245.
[20]  喻洁, 李方兴, 李扬, 等. 互联区域多目标发电调度的协同优化策略[J]. 电力系统自动化, 2009, 33(2): 30-33.
[21]  Yu Jie, Li Fangxing, Li Yang, et al. A coordinated optimization strategy for multi-objective generation dispatch in interconnected areas[J]. Automation of Electric Power Systems, 2009, 33(2): 30-33.
[22]  谢国辉, 张粒子, 邵志刚, 等. 改进Shapley值在协同报价利润分配中的应用[J]. 华东电力, 2009, 37(2): 232-235.
[23]  Xie Guohui, Zhang Lizi, Shao Zhigang, et al. Application of improved Shapley value to profit distribution for collaborative bidding[J]. East China Electric Power, 2009, 37(2): 232-235.
[24]  谭忠富, 陈广娟, 赵建保, 等. 以节能调度为导向的发电侧与售电侧峰谷分时电价联合优化模型[J]. 中国电机工程学报, 2009, 29(1): 55-60.
[25]  Yu Jie, Li Yang, Xia Anbang. Distributed optimization of generation dispatch schedule considering environmental protection and economic profits[J]. Proceedings of the CSEE, 2009, 29(16): 63-68.
[26]  彭春华. 综合环境保护及竞价风险的发电侧经济运行[J]. 中国电机工程学报, 2008, 28(28): 97-102.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133